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I. INTRODUCTION

Designing or analyzing the response of an electronic system to some kind
of electromagnetic interference such as the nuclear electromagnetic pulse (EMP)
is a complex problem, because of so many individual components and intercon-
nections. An example of such a complex system is the multiconductor cable
network inside an aircraft.

When an aircraft is in an EMP environment, the cables inside the air-
craft will be excited by an electromagnetic field which penetrates the air-
craft body through a large number of penetrating conductors, small antennas,
apertures, and by diffusion through the skin of the aircraft. Many parameters
determine the response of a multiconductor cable; these include polarization,
angle of incidence, planarity and spectral contents of the incident field;
number of points of entry (POEs); size, shape and location of POEs; physical
properties of the transmission 1ine and the surrounding medium; and the con-
figuration of load impedances. This large number of variables and the complex-
ity of the multiconductor cables create problems in gaining insight into how
to control the system performance in an electromagnetic environment.

In evaluating the system vulnerability to EMP, it is often desirable to
evaluate upper bounds on the problem rather than compute the full coupling
and interaction evaluation for the cases of interest so as to determine the
system survivability/vulnerability with high confidence. In most of the
cases the latter may be effectively impossible due to system complexity and

lack of complete and correct definition. To deal with this complexity one

needs ways to identify and deal with a set of important variables which, if

i
|
|
|
|
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controlled, control the system performance. An approach to this problem has

been developed (Ref. 1) which can be referred to as electromagnetic topology.

Having defined the electromagnetic topology and the related interaction
sequence diagram (graph), one can write a general matrix equation (BLT equa-
tion, Ref. 1). The resulting éupennatrix equation evaluates into an approxi-
mate solution which shows the dependence of the system performance on system
shielding parameters. A BLT equation for transmission-line networks within
the system can also be formulated (Ref. 2). This equation shows the dependence
of the cable network response on the induced sources, physical configuration
of the cables in the network, and the load configurations. Certain approxi-
mate bounds for the termination voltages and currents can be obtained from
norm concepts (Ref. 3).

In Reference 4, upper bounds were obtained for voltages and currents
at terminations of a multiconductor transmission line excited by a single
aperture, but bounds were not established for physical parameters of the

line. For a moderately mismatched termination, the upper bound for the ter-

mination voltage was 10 times the actual maximum voltage.
This report establishes upper and lower bounds on the voltages and ;

currents at terminations of a multiconductor transmission-line network

excited by an external electromagnetic field. The general matrix equation !

(BLT equation) is used as the basis for establishing upper and lower bounds

on the termination voltages and currents. Upper and lower bounds on forward

and backward traveling combined voltage waves are also established. These

o ANl e a=

bounds are obtained in terms of upper bounds of several parameters, such as
the source, load impedances, characteristic impedance of the line, etc.

Upper bounds on these parameters are established for some special cases.

-
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In Section II, the equations governing the response of a general multi-
conductor transmission-line network are discussed. In Section III, the upper
and lower bounds for the combined voltages, voltages, and currents are
obtained in terms of the induced sources, physical properties of the cable
network, and the load configurations. The bounds on the ratio of the maxi-
mum pin current to the bundle current are also discussed. In Sections IV
and V, bounds are obtained for two specialcases of a general multiconductor
transmission-line network, namely, a uniform section of a multiconductor
transmission line and a multiconductor transmission line with a branch. Pro-
cedures for obtaining bounds on parameters of the line such as the
characteristic-impedance matrix, reflection-coefficient matrix, and the
scattering matrix are discussed. Bounds for induced sources are also dis-

cussed for these two cases. In Section VI, the upper and lower bounds are

computed for a uniform three-conductor line terminated at both ends in diagonal

loads for several load configurations. These bounds are compared with the cal-

culated maximum values using the QV7TA computer code (Ref. 5).




IT. GENERAL MULTICONDUCTOR TRANSMISSION-LINE NETWORK EQUATIONS

This section reviews the multiconductor transmission-line
equations for a general network. The detailed derivation of these equations
is discussed in Reference 2. These equations form a basis for the evaluation
of upper bounds on voltages and currents at terminations of a multiconductor
line network.
1. PROPAGATION ON A UNIFORM N-WIRE TRANSMISSION LINE

First consider a single section of an N-wire transmission line.
An N-wire transmission line is one that consists of N conductors and a refer-
ence conductor (or anequivalent one). Figure 1 shows aper-unit-length equiva-
Tent circuit of the 1ine with distributed sources. The equations governing
the voltage and current propagation on an N-wire transmission line are the

generalized multiconductor transmission-line equations:

gz (T(2.80) = =(F2 (D) + (Tp(zs)) + (F(9) (2,00 (1)
LT (2.8)) = =(30 () + (T (z.8)) + ((8) " (2,9)) (2)
dz ‘'n‘“< n,m n‘“? n ’
where
S = jw
z = position along the line

z,s)) = current vector at z

z,s))

(s)) = per-unit-length shunt admittance matrix

voltage vector at z

(s)) = per-unit-length series impedance matrix
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Figure 1. The per-unit-length model of a multiconductor transmission line,

..( )l
(1,3 (z,9))

per-unit-length shunt current source vector

~ ]
(Vﬁs) (z,s)) = per-unit-length series voltage source vector

Note that all vectors are of dimension N, and all matrices are N x N.
By algebraic manipulations of Equations 1 and 2, an equation for com-

bined voltages can be obtained as follows (Ref. 2):

@%m)%+qﬁc un]-w4ug)=(ﬁﬁkhw> (3)
? n,m

‘ 1 forn=m
1 = (4) w

n,m l 0 forn#m

q = ¢ for forward and backward traveling combined N-vector
waves, respectively




be obtained:

(V, (2,5)),

(V,(2.5))_

(W) (2,800,
W (2,9

(V (z.8)),

(V. (2,5))_

.............

n,m

(8)

characteristic-impedance matrix

characteristic-admittance matrix

Substituting g = +1 and q = -1 in Equation 6, the following relations can

(V (z,s)) + (2Cﬁ,m(s)) . (fn(z,S)) (9)
(V. (2,5)) - (2Cn,m(5)) « (1 (2,8)) (10)
U COEN A Ol (3 an
SURICRIELCANOIR (32,51 (12)
= forward traveling combined voltage vector or wave

= backward traveling combined voltage vector or
wave

10
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From Equations 9 and 10, voltage and current vectors can be reconstructed in

terms of forward and backward waves, and given by the following relations:

W“Zﬁ))=%[W“ZﬁH++(V“Zﬁﬂ_} (13)
(I,(z,8)) = %-(?cn () - [(Vn(z,S))+ - (Vn(z,s))_} (14)

From the above definitions can be obtained two sets of waves propagating

[PRT C YO

in opposite directions along z. For all modes, there are

exp [—(\7 (s))z} + propagating
~ Cn,m

exp[(?C (s))z] - propagating
n,m

Equation 3 can be integrated to obtain a solution for the combined voltage

vectors to give

l

(Tp(z:))g = o0 |-ali, (D)2 = 250 | - (y(zg08)),

n n,m
z l' ~()I 1 | 1
‘ jz exp %-Q(ch,m(s))[z D RNV (15)

o]

AT i

For a + wave (i.e., a wave propagating in the +z direction), assume

that (Vn(o,s))+ is specified, then Equation 15 gives

PRy

Cn,m
Y4 1
* f exp‘-(*?c (sVfz - 27!+ (@l9) (z',s)),dz’
0 ’ n,m ‘
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b

Similarly for a - wave with (Vn(L,s))_ assumed specified, we have

(Vn(z,s))_ = exp}(?c

(s)) [z - L] L. (V (L.s))

n,m | - |

z
+ JL exp}(?c (s))[z - z']) . (V(S)l(z',s))_dz' (17)

n,m ! n

These results illustrate that the + wave depends only on the left boundary
condition and the - wave depends only on the right boundary condition in a
very compact way.
2. TERMINATION CONDITION OF A SINGLE SECTION OF THE LINE (TUBE)

A transmission line is usually terminated at the two ends z = 0 and
z =L. The termination could be a lumped impedance, a distributed network,
open circuit or short circuit. If sources are included, these conditions can
be represented by a generalized Thévenin equivalent network or a generalized
Norton equivalent network.

Passive terminations can be specified as an impedancé matrix
(ZTn m(z,s)) or an admittance matrix (VTn m(z,s)), where z = Q or L. The
term1nat1ng conditions can be specified by scattering matrices (Sn m(z,s)),
where z = 0 or L. Consider at z = L (see Fig. 2); let the incoming waves be

designated by a superscript - and the outgoing waves by a +. The scattering

matrix is defined by

(#)(s)) = (5, (z.8)) ~(#1)(s)) (18)

n,m

For the case illustrated in Figure 2, observe that, if this termination

is taken as z = L, then

12
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Figure 2. Incoming and outgoing wave at a junction.

(97 8(s)) = (T (L,s))
() = (T (Lus))
n ntov 0+

And if the termination is taken as z = 0, then

(9#8(s)) = (T (0,8)),

(5#7s)) = (V,(0,5))

Equation 18 for z = 0 and z = L can then be rewritten as

(Vn(L,S))_ (gn,m('-ss)) * (vn(Lss))+

(V) (0,8)), = (S, 1(0,5)) = (V,(0,8))_

(19)

(20)

(21)

(22)

which in this terminating case is the same as the definition of a reflection

matrix, and these are given by the following relations:
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The scattering matrices in Equations 23 and 24 can also be represented in

terms of the characteristic-admittance matrix and the load-admittance matrix

as
" [ . 1 [ ~
Gyt = [0 (o« (0 (wa] - [(ch,m(S)) AR
, (25)
(3, 1(0,5)) = [wcn’m(s)) o] [(?Cn,mm) . <7Tn,m(o,s>>] -

Having defined the general transmission-line equations and termination
conditions for a uniform multiconductor transmission 1ine, now consider multi-
tube multiconductor transmission-line networks. Before deriving the BLT
equation, the scattering supermatrix for a general network will be discussed.
3. SCATTERING SUPERMATRIX

The concept of scattering matrices introduced in the previous section
for a terminated tube is extended here for junctions where more than one tube
is connected. Collections and suitable ordering of scattering matrices at all

Junctions of the transmission-line network form a scattering supermatrix.

a. Junction scattering supermatrix--Consider the vth junction, Jd
with tube ends denoted by Jv,r with index r denoting the rth tube. Let this

Jjunction be characterized by an impedance matrix

A \-l .-
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(s)) (27)

-t

. (si} = |
un,m‘ /)‘J \ n,m

The junction scattering matrix is defined so that

(Ty()), 4 = By pls))y + (7

(s))

n Ve~

where the subscripts + and - refer to the aggregate of respectively outgoing
and incoming waves on the various tubes in the form of combined voltage vectors.
In the supermatrix, fonnpértition according to waves on the r, tube

ends connected to J  as

(s = (F, (), 0+ (D)

r, n,m>le,rtt n v
(28)
N . -1
(5D ) 2 (Fy (D )

where

@0,y » G760,

r=1,2,...,r

are the voltage and current vectors on the rth tube ends at Jv with current

* e
-\D

..

<

convention into JV.

*, A AN
. f_sfj.v'. P4

The tube associated with the rth tube end at JV has characteristic

impedance and admittance matrices which can be put in supermatrix form for Jv

as
((Zc (S))r r') = tube~end characteristic-impedance
n,m ** v supermatrix for JV
(29)
(Y (s)), ) = tube-end characteristic-admittance
cn,m ** v supermatrix for Jv

15
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where
characteristic-impedance matrix for rth
tube end at Jv fcrr=1r'
(Z. (N, = |
n,m (On,m) forr # r
characteristic-admittance matrix for rth
- tube end at Jv for r = r'
V. )y, =
n,m e (0n m) forr # r!
: (30)
v 5 -1
(Y (s)),. ... =1(Z (s)) )
cn,m r,r;v cn,m r,r;v

The impedance and admittance supermatrices for the tube ends at a given junction

are block diagonal and may be represented in terms of the direct sum @ as

((F, (N ) = )y g, & (I (), & &(F  (s))

Ch,m rsrey Ch,m Ch,m 263V nm Ty
r
\
) J§ﬁ (ch,m(S))r’r;V
((VCn,m(S))r’r.)v = (ch,m(S))l’l o ® (?Cn’m(S))z’z;V&D---GD(VCn’m(S))rv’rv;v
r
v
" Vep p (31)
The scattering supermatrix for JV is defined by
((Vn(S))r)v L C ((gn,m(s))r,r')v : ((Vn(S))r)v )
(ACIINE <(V,‘,°’<s>)r>v SO ((f,‘,O)(s))r)v
= outgoing wave supervector at JV
(Tp(s)) ) 2 <<V,£°’<s>)r)v U () ) ((f§°)(5>>r>v
= incoming wave supervector at Jv (32)




Ud

By solving Equations 28 and 32, the junction scattering supermatrix can be
obtained as (Ref 2):

-1
((§n’m(5))r,r.) = [((in,m(S))r,r.) DY, (s)y )+ (1) )y ) ]

\Y

. -1
o (SR R (C A BT N A ()] |
v

n,m v ? v

: [((ln’m)m.)\ - (7, m(s))‘”"”')v : ((?n,m(s))r,r.)v]
(33)

b. Scattering supermatrix--The proper ordering of all the junction

scattering matrices into one large matrix forms the system (or network) scat-
tering supermatrix ((gn,m(s))u,v)' This supermatrix is a collection of the
junction scattering matrices, which themselves are collections of individual
tube scattering matrices. The latter are matrices containing reflection and
transmission coefficients of individual wires within the tubes.

The wave-wave matrix (wu v) gives the structure of the scattering

supermatrix since the scattering supermatrix is in general block sparse as

((gn,m(s))u,v) = ((0) ply,y)  forW, =0 (34)

The network elementary scattering matrices are formed as

i (Sn,m(S))r,r';v for vy f v2.= vorW,
(Sn,m(s))u,v = scattering into W at J
(On,m) = (On,m)u,v for v; # v, or W, not

scattering into wu
(35)
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The wave-wave matrix is defined as

1 for v, = vy =V and wv scattering into Nu at Jv

1
wu,v -
0 for v, # v, or W not scattering into W
1 2 v u
(36)
The scattering supermatrix is Nw X Nw in terms of the u,v indices, i.e.,
u,v = 1,2,...,Ny (37)

where Nw is equal to twice the number of tubes. The elemantary scattering

matrices (Sn,m(s)) are Nu X Nv’ i.e.,

U,v

n = 1,2,...,Nu
(38)

m = 1,2,...,Nv

where

N = number of conductors (not including reference) on the (39)
tube with uth wave

and likewise for Nv'
As a special case, if there are no selftubes (with both ends

connected to the same junction), then

W =0 foru-= 1,2,...,Nw for no selftubes
(40)

(Sn,m(s))u,u = (On,m)u,u for n,m = 1,2,...,N, (square)

4. DEFINITIONS OF SEVERAL IMPORTANT SUPERMATRIX AND SUPERVECTOR QUANTITIES

This section takes the results for the combined voltages on a tube and |
separates them into wave variables for the network. The resulting equation !?
for a general combined voltage wave wu is used to relate the combined voltage o

waves at both ends of the tube with the sources along the tube. Each term is

18
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generalized to a form appropriate to the transmission-line network, i.e.,

supermatrices and supervectors, by aggregating the results for all wu for
u = 1,2,...,Nw.
First, identify the two waves on the tube with the two waves of the
transmission-line network, e.q., Nu and wv.
Then, consider the + wave; call this wu and set the coordinate and dimen-

sion variable as

—
n
—

= length of path for wu

Zz = z = wave coordinate for wu
(41)

0 < zu_s Lu

N = N = number of conductors (less reference) on tube and
dimension of vectors for wu

The wave and source conventions are then

(Vo (z,05)), = (V(z.8)), = (V

(zo8)) + (Z_ (s)), - (T (z,8)

n n,m

combined voltage for Nu

(V(S) (Zu’s))u : (V£S) (Z’S))+ N (V£S) (Zu’s)) ¥ (ZC (S))u ) (T£S) (Zu’s))
n’m
= combined voltage source per unit length for wu
(Zc (s))u = (VC (s));1 = characteristic-impedance matrix for W _
n,m n,m
(Y. (s)), = (¥, (s)) = propagation matrix for W_ (42)
n,m n,m

The combined voltage vector for the wave wu is given by

19
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n'“u n.m uTuy n u :
1
Z .
+ ‘ exp ‘-(? (s)) lz. - 2! ' . (V(S)'(z' s)) dz' :
o | Cnom ul®u uj{ n uw .
(43)
Similarly, the combined voltage vector for the wave wv can be defined. )
Equation 43 shows the combined voltage at any z  in terms of the value :
u
(boundary condition) at z, = 0. Setting z, = Lu introduces the boundary )
value there as giving i
- ~ (. | -
(Vp(L»8)), = exp l-(ch,m(S))”LH (v,(0,s)),
L
.k exp ‘-(7 (s)) D- - z'], . (V(S).(z' s)) dz'
o ' Cn.m ulu u ‘ n u”uu
(44)

This evidently relates (Vn(O,s))u which is an outgoing wave from the junction
at z, = 0, to (Vn(Lu,s))u which is an incoming wave to the junction at z, =L,
As a matter of convention, let all the sources be considered as being
present in the tubes instead of at the junction. If a junction has an equiva-
lent circuit containing sources, then the sources can be moved just across the

terminals into the tube, a movement of zero distance.

a. Propagation characteristics supermatrix--Considering the various

terms in Equation 44, first aggregate all the propagation terms not associated

[RECRUNA L. FPSISNU WOW _ NPEATCIISIIEDS. 7 LIS T

with the sources into a block diagonal propagation supermatrix as
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((?n,m(s))u,v) j
= ‘_ v I ‘ v ' PP ‘_ S l .4'
zexp (ch m(S))an@_exp | (ch r(ns))sz‘@ ® exp (wcn m(s))NwLNw‘ :

s ] b 4
= g§ expl-(3. (s)) L ! (45) }
u=l ' n,m uu
)
= propagation supermatrix
where the elementary matrices (blocks) are given by
(% ! =
. exp (ch’m(s))uLu\ for u = v
(1,,,,“(5))‘1,V =
(On,m)  foru# v ‘
. ) (46)
N 1u,v exp (-(ch m(s))u ul

b. Source supervector and combined voltage supervector--From Equation

44 define a source vector for Nu in traveling from.zu =Q to z, = Lu as

(48)

L
u . [
(V£S)(S))u : fo P 3-(7Cn,m(s))u[?u } Z&]{ | (V£s> (z)05) 42, (47)
The source supervector is then N
L, ;
(@) (s)) ) = (jo exp (e ()l - 7 - (i) (Zl‘],S))udzl") i
1

For completeness, onehas the aggregate of combined voltage vectors in Equation

43 as

((Vn(o,s))u) = combined voltage supervector of outgoing waves
at the junctions
(49)

it

(T (L,08)),)

combined voltage supervector of incoming waves
at junctions
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5. BLT EQUATION
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Combining the results of the previous derivations we can write the BLT q
equation for the description of the transmission-line network. In Reference 2

the BLT equation was derived for the combined voltage waves leaving the junc- ;

tions. Here, the BLT equation will be derived for four variables, namely,
combined voltage waves leaving the junctions, combined voltage waves entering
the junctions, the total voltage vectors at the junctions, and the total
current vectors at the junctions. Begin with the scattering supermatrix

which relates the incoming waves to the outgoing waves as
(Vo(0,8)), = (3, n(s)), ) 2 (T (Lyus)) (50)

Next, relate the incoming waves at the output ends of the tubes (zu =Lu)
to the same waves at the input end of the same tubes (zu = 0), albeit at differ-

ent junctions in general. Equation 44 jn supermatrix form is
m = ((F . (T a(s)
((Vp(L,ss)),) ((Pn,m(s))u,v) 2 (v (0,s)) ) + ((V, (s)),) (51)
Combining Equations 50 and 51 gives

) 2 ((V (0,s)) )

n u

(F(0,9))) = (5, o)), ) & ((Fy nls)),

v

# (3 )y ) 2 () (52)

That is rearranged by use of the supermatrix identity as

[, ) = (G oDy ) 2 (Fy ntsny, )] & (o))

u,v

SRIILY .. WO

= (S, n(s))y ) 5 (a0 (53)
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This can be rearranged to obtain

(70,90 ) = [((Ty wyy) = (Gl ) ((F, ()]

n u

(G, (), ) s (@) (58)

This is one form of the BLT equation, with unknowns taken as the combined voltage
waves leaving the junctions. Similarly, the BLT equation can be obtained with
unknowns taken as the combined voltage waves entering the junctions.

Rearranging Equation 51 gives

; - S < ST
(U0, = ((Fy o))y 702 (F(Lyes)y) = (Fy (), )70t (G0

n,m
(55)
Combining Equations 50 and 54 gives
[(F, (50 )78 = (B )y 0] 5 (0 (L,080),)
= ((F, p(s))y 7 2 (@) (56)

Rearranging Equation 56 gives

)
’(s>)u3

(57)

-~ - . -1 5
(i (Lgshy) = [y ) = (Cynlsh)y ) 8 (G a0y )] 1 (e

This is another form of the BLT equation with the unknown taken as the combined
voltage waves entering the junctions. From Equations 54 and 57, the BLT equa-
tion can be derived in terms of the total voltage and total current supervectors.
Note the order of multiplication of scattering and propagation supermatrices in

Equations 54 and 57. Rearrange Equation 54 so that the order of multiplication
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of matrices is the same as that in Equation 57. Equation 54 can be rearranged

to give

~

- . -1
(080 = (B, (1), ) [0, 000 = (Fy (s)y )2 (6, (60, )]
2 (@) ) (58)

From Equation 13 and 14, the supervectors for voltages and currents at the
junction can be written in terms of the combined voltage waves leaving and

entering junctions as

,q
—
¢
(@}
=
_——
7))
~—
g
—
"
N 4

[(T0.01,) + (B )y ) 5 (L)) (59)

-~

=7 (T 0y )8 [0y - (e D) 2 (T ,0),)]

nom n,m’u,v
(60)

where Véo)(s) and fgo)(s) are voltage and current on the nth conductor in the

—
—
—
38 o~
o
S
—~
w
S
St
e
1}

tube containing the uth wave at the junction from which the uth wave leaves.
In Equations 59 and 60, a permutation supermatrix ((Pn m)u v) nas been
introduced to sum the appropriate outgoing and incoming waves at the junctions.

The permutation supermatrix blocks have the following properties:

(1, m)u v 1f W, and Wy are on the same tube and u # v (noting
(P ) - > 707 that this is a square matrix)
nsmu,v (On m)u v if W, and W are not on the same tube or u = v
U,v = 1,2,...,Nw
and
n = 1,2,...,Nu
m=1,2,...,N, (61)
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Cnly one block matrix (P_ ) is equal to (1_ _) on any row or cs.umn with

n,mu,v n,n

respect to indices u or v. Thus ((Pn m)u v) is an orthogonal supermatrix.

Substituting Equations 57 and 58 into Equations 59 and 60 we obtain

——
-
<
P
=)
g
——
w
A
g
A
"

WO, = 3 {06, a1y ) * (P )

n,mu,v
5 ! y(s)
[0 ) = (G n(s)y ) (G ] (@60
(62)
(i(0s)) ) = AT (D) (G, () - (P Wy )]
3 g -1 ~(s)
[ ) - (B, ) 1 (G0, )] 2 (@)
(63)

Equations 61 and 62 are two forms of the BLT equation in terms of the volt-

age and current supervectors at the junctions.




'
III. BOUNDS FOR SIGMNALS ON A MULTICONDUCTOR CABLE NETWORK
)
Having derived the BLT equations for general multiconductor-line networks,

one can now establish upper and lower bounds on combined voltages, voltages,
and currents, using the norm concept discussed in Appendix A. The BLT equa- ;
tions give voltages, currents, and combined voltages at the junctions. From ?
these, voltages and currents can be found essentially everywhere, including at ;
the junction terminals and at arbitrary positions on the tubes. However, only 5
the junctions will be used to establish bounds. ?

N

1. BOUNDS ON COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Taking the norm of both sides of Equation 58 gives

)

u,v

T 0, )N = IS, (), ) # (1, )

S (Fy )y ) (G, o0, W@ o (64)

u,v

Using Equation A6 in Equation 64 gives

(s))

n,m

TEACISIIIPATE 1L, )y )

n,m

Rearranging Equation 58 gives

-~

e, ), ) - T

n,mu,v n,m u,v n,m U,v

Taking the norm of both sides of Equation 66 and using Equation A6, one

obtains



(LG T TS T (A €1 D IS B (I O D N B I (I 5D S
ORI TSI
or
AT
”((V )(s)) il
IR nmuﬁ-(ﬁm“ﬂmﬂ).ﬂ%mhﬂmﬂ]:(Gm#ﬂmwﬂﬂ

(67)
Equations 65 and 67 give upper and lower bounds on the norm of the combined
voltage supervector for all waves leaving junctions, in terms of the norms of
other quantities, such as combined voltage source waves, scattering supermatrix,
and propagation.supermatrix.
Similarly, one can obtain upper and lower bounds on the norm of
combined voltage supervector for waves entering junctions. Taking the norm of

both sides of Equation 57 and using Equation A6, one gets

T DO < ITCL, )y ) = (Fy nls)y )2 (3 ), 17
o eeuts)
FCV (s I (68)
and
_ 1l s))) :
I LD 2 O (90),)] (69) 3
ITCL, )y ) = (), ) 1 (S, n(s0), NI

Similarly, from Equations 62 and 63, the upper and lower bounds on the !;

norms of voltage and current supervectors are given by




ey

D
o e
{L’fl s . W

-
sl

0

.l {¢ “l "I . -

|‘l"

-

NI < JITG, a0, )+ (P )y I

7 . (8 -1 j(s)
) = (B )y ) 2 (G s, ITHIHTT S (s0) )]

”[ nmuv

n,m
(70)
Qs < FUOTe (D VTS, gl ) = (Py )y VI
amduy) - (F sy ) s (B (), VTHE IS sn 1l
(71)

AP NI = FHC D I/ IT, 2, )-(E, as), )G, ps), )]

FIUG, (s, e, 0 17 (72)

AP NI 2 3 N I/ 100, ) (G, V3G, als), )]

. g -1, 3
LG, () )=y D, VT 5 1z (a0, DII]

n,m “u,v
n,m (73)

Equations 70 and 71 give upper bounds on the voltages and currents, respec-
tively, and Equations 72 and 73 give lower bounds on voltages and currents,
respectively.

Before evaluating these upper and lower bounds, we shall illustrate
what these bounds mean. The upper and lower bounds defined in Equations 65,
67, and 68 through 73 are upper and lower bounds on the norm of vectors.
In Appendix A, 1, 2, and » norms for vectors and matrices are defined. The

above equations are valid for any norm as long as they are consistent on both
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sides of the equations. For the purpose of bounding signal levels, < norm for
vectors is most appropriate, for it gives the magnitude of the largest element
~$}*f of a vector. For a voltage or current vector at a junction or at any point
A along the line, the » norm gives the magnitude of the maximum conductor voltage
:_}4 or current (pin voltage or current at terminations). Thus an upper and lower
. bound on the = norm of a vector gives, respectively, an upper and lower bound on
-ft; the magnitude of the largest element of the vector. The lower bound should not
| be confused with the magnitude of the smallest element of the vector.
Since the 2 norm of a matrix is obtained from the knowledge of its
eigenvalues, it can be evaluated from the characteristic proverties of the
f matrix and will therefore be used for matrices in the evaluation of upper
and lower bounds. Using = and 2 norms and Equations A64 and A94 through A99,
upper and lower bounds can be written for combined voltages, voltages, and
currents as follows.
Using 2 norms on both sides of Equation 65 and substituting Equation

A63, one gets

08N, = 1S, a(s)), i,

o

n,m)u,v n,m

e ) - (), ) 2 (G ls))y W1, IS s )1

“’ (74)

o Substituting Equation A65 into Equation 74 gives

10N L, < /R (G, als))y I

x

J[5(8 )= ((F ols))y.,) 2 (5 )]

u

n,m)u,v n,m n,m(s))u,v)]-luz ”((\7:(15)(5)) ®

e (75)
' ®. Where N_ is the dimension (numbers of components) of the source supervector.




¢ LN 1.~ f‘ ¢,
3

A Tower bound on tne combined voltages for all waves leaving

junctions is obtained by using « norms on both sides of Equation 67 as
DO 0,50 D 2 KA ) D/ [T, )y )= (F (81 )G, (80, )]
15, als)y 7L (76)

Substituting Equations A6 and A98 into Equation 76 gives

1T 0,0l 2 1T (0 DI/ PRI . (50, ) 25 a0, )T

(RO (77)

where Ns is the size of the supermatrices in the denominator.
An upper bound on the combined voltages for all waves entering

junctions is obtained from Equation 68 using Equation A63 as

~ -~ R _1
IOV (L yssD Il < ITCC, )y ) - (T, ns))y o) 2 (S, nls))y DT
ils)
MV NP, (78)

substituting Equation A65 into Equation 78 gives

IV (L os ) D, < /A T ) = (g on(s)y ) 2 (G s, VTN,

n,m)u,v

(79)

()
(T8)(s))

D,

Similarly, a lTower bound on the combined voltages waves for all waves entering

junctions obtained from Equation 69 wusing Equation A98 as
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ROSUBININ
\ T (L)) 2 -
% 101 ) - ((Fn,m< >>u,v> L (G, (), T
= ISISINIE
" S, ), ) - ((rn,m(s))u’v) t (G, (), )
2 (80)
X Similarly, an upper and lower bound on the voltages and currents -at the junc-
tions is obtained from Equations 70 through 73 using Equations A6, A63, A65 |
ot and A98 as |
5 1O () ) x I, a(s)y ) *+ (B )y I
DT g ) - (8] ) £ (G (0], )T M (D1,
<3 MNLCE, a(s), ) + (B )y VT
T | A ) - (Fy (), ) 208, (), LI () 1,
,_ (81)
N e 27 T 0/ 1101 gl -G 1)), 3G, (), )]
> (G (5D g )+ Py )y T ML
'. z % I ((vr(\S)(s))u)“m/Em_s”[((ln,m)u,v)'((l:n,m(S))u,v):((gn,m(s))u,v)]HZ
o TG, o)y Ry Dy T ] (82)
7‘.5,' 31
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(s)). ) - (° ) VIl

n,m u,v n,mu,v

DL ) = (T l8)), ) 2 (6 p)), T HIL I o0 ),

() ) = (P )y VI,

n,m)u,v

(1, ), ) - (L (s)), ) 2 (B, (1), T HILIES sy i

n,mu,v nm 7 u,v n,m >’ u,v
(83)
. 1¢37(0) 1y oeils) X (3
3 AP N I 2 3 10 0 DL, 2, ) -(F, (5D, )G, a1, )]
N i g i
LG )y )Py )y WTF 2 (2 (), D]
1 (s)
2 21 6 )L/
AN [((1‘1,,“)u,\,)—((rn,m(s))u,V):((sn,,,,(s))u,v)lll2
~ _l ~
SIS(CRMOMNIME(CA D i P C m(s))u,v>”2]
(84)
So far, relations for upper and lower bounds for combined voltages,
voltages, and currents have been derived in terms of norms of other parameters,
such as the propagation and scattering supermatrices, the characteristic impe-
iﬁﬁ dance or admittance supermatrix, and the source supervector. Thus, to establish
oY
;Q upper and lower bounds on combined voltages, voltages, and currents, one has to
}% first establish bounds on the parameters. To establish bounds on the parameters [
if and the sources for a general multiconductor cable network is very difficult. g
f% Furthermore, if such bounds could be established on parameters, the resulting g
f; bounds on the voltages and currents may be unrealistic, To get reasonable 2
- bounds, special canonical configurations of a multiconductor cable network %
js are considered in Sections IV and V. i
." 4
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The simplest of these configurations is a uniform section of a multi-
conductor transmission line in a homogeneous medium terminated at both ends
and excited by an external field or voltages and currents at terminations.

To make the transmission line configuration more complex, a branch can be
added to a uniform section of the line. The branched 1ine will illustrate the
procedure for calculation of bounds for cable networks with junctions. These
two configurations will be considered in Sections IV and V.

2. BOUNDS IN TERMS OF BULK CURRENT

In evaluating the EMP vulnerability of a system, the bounds which are of
most interest are the bounds on pin currents in terms of the bulk current.

The bulk current on a multiconductor transmission line is defined as the
algebraic sum of all the wire currents at a given cross section. This concept
of pin current bounding in terms of the bulk current has tremendous implica-
tions for ajcraft testing. If such a bound can be established, then one need
measure only bulk currents on cables in an aircraft, thereby reducing the
number of measurements by orders of magnitude. This section addresses the
problem.

Since the 1 norm of a vector is defined as the sum of the magnitudes of
its components, and the bulk current is the algebraic sum of the wire current
in a cable, then for current vector on a multiconductor line at a termination

one has

1,0l 2] (5)

Y‘;\)l

where (Tgo)(s)) is the current vector for the rth tube at the vth junction,

r;v
and Téo)(s) is the bulk current on the rth tube at the vth junction and is

riv '
Téo)(s) = :E: fgo)(s)r;v.

defined as riv
n=1
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Writing Equation 85 for currents at all the junctions gives

a2 |3 3 106, | = 1l (86)

where the right-hand side is the sum of all the bulk currents in all the tubes

at all the junctions.

Now express the = norm of the current supervector in
terms of the total bulk current. This can be further decomposed in terms of
bulk currents on tubes at variocus junctions for specific problems. Substitut-

ing Equation A63 into Equation 84 gives

ANty 2 21 I,

/L, 2, (8D, VG 50,

- |

[y, ms)y )= (P )y VTN CE (50 )]
(87)

and taking 1 norm of both sides of Equation 63, and then substituting Equa-

u,v

tions A6 and A94 into the result gives

A sn iy <5 /N (A CINRI PYICARCI R (G

[Ty )~ Pl ) £ 0], I T I s

(88)

In Equations 87 and 88, 2 norms of matrices are used, since these can be
computed from energy conservation. Dividing Equation 84 by Equation 88

and then substituting Equation 86 1in the result, one obtains
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2 IS () L/ N T )= ((Fy ), ) 2 (B, nts), )1l

n,m)u,v n,m u,v

IS 3Dy ) = (B T I T 1z, (50, i

c T sy Il HTAS, ()Y, ) - (P

n,m

)1,

n,m)u,v

L, ), ) - (-

n,mu,v

(D)) ¢ (G (1), T2, IS D I ]

m u,v n,

(89)
Thus Equation 89 gives a lower bound on the ratio of the maximum pin current
to the bulk current.

Similarly, dividing Equation 83 by Equation 87 gives

[GHUDN
sy i,

< N I(T (D), VIILU, (D), ) = (Py )y I

L, ) - (Fp )y ) (B

n,mu,v

OIS 1Py ({2 IO

n

T ) = (B () ) 2 (G (90, VTHITCG )Y ) = (P 1), T

S
(90a)
Also, from Equation A64
#(0)
[
ll((~?o)(5))U)llw < (30b)
1T (s P
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In Equation 9Q the upper bound is independent of sources. In Equations 89
and 90, the norms of matrices and their inverses occur in pairs. From Equa-
tion A56, the product of the norm of a matrix and the norm of its inverse is
greater than or equal to 1.

From physical principles and Equation A65 the Tower bound on the ratio
of the maximum pin current to the bulk current is l/Ns. Thus, with the result
in Equation A56 in mind, the lower bound in Equation 89 is not useful since
it gives a lower bound less than 1/Ns.

Equation 90 gives an upper bound on the ratio of the maximum pin
current to the sum of the magnitudes of all the pin currents. Since we can-
not substitute the 1 norm in the denominator with the bulk current, this
bound is not very useful either. It is obvious from the above discussion
that an upper bound on the ratio of the maximum pin current to the bulk
current cannot be obtained analytically. However, it i§ seen easily that,
in general, pin current is not bounded with respect to bulk current, since
the bulk current in a cable can be zero, while the individual pin currents are
nonzero; for example, a two-wire cable excited in the differential mode has

nonzero pin current and zero bulk current.
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IV. BOUNDS FOR A UNIFORM SECTION OF A MULTICONDUCTOR TRANSMISSION LINE

This section covers a special case of a general multiconductor cable
network, a uniform section of a multiconductor transmission line termi-
nated at both ends. Two types of excitations will be considered. In the
first type of excitation, the line is excited by an incident external
field, and in the second type, the line is excited by voltage or current
sources at the terminations.

Consider a multiconductor transmission Tine formed by N conductors plus
a reference conductor or ground as shown in Figure 3. The line is assumed to
be uniform along its length (z coordinate), but with arbitrary cross section.
In general, the dielectric surrounding the line is inhomogeneous (e.g., cable
made of insulated conductors having different geometries and dielectric

materials).

The wave t-aveling in +z direction is denoted by wave Wl or simply
wave 1, and the wave traveling in -z direction as wz or wave 2, as shown in ;
Figure 3. Then the combined voltage vectors for multiconductor transmission- S
line in Figure 3 are given by 5
. (Vn(0$s))1 ;i
(T80 = | (91) .
(7, (0,5), 1
.
) (V (L,s)), _
(Vo (L,08)),) = ) (92) '1,
(T (L,s)), 3
where (Vn(o,s))1 and (Vn(O,s))Z are the waves leaving junctions at z = 0 and '

z = L, respectively, and (Vn(L,s))1 and (Vn(L,s))2 are the waves entering

Jjunctions at z = L and z = 0, respectively.
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Figure 3. A multiconductor transmission line over a ground plane,
terminated at both ends.

The waves leaving and entering junctions are related through scattering

matrices as

(vn(o’s))l (gn’m(s))l’z ¢ (vn(LQS))Z (93)

(7 (0,8)), = (B (s))y 1 = (V. (L)), (94)

n,m N

where (Sn,m(s))l,z and (sn,m(s))Z,l are scattering matrices of junctions at
z=0and z =L, respectively. The subscripts 1,2 and 2,1 indicate that the
2 waves is scattered into the 1 wave and the 1 wave is scattered into the 2
wave, respectively. Combining Equations 93 and 94 and writing the scattering

matrices in supermatrix form gives

(V,(0,5)) (O 1.1 (3p.m(5))1.2 (7 (L.s))y

(95)

~

(V,(0,8)), ) PYPR (I P (V,(L,s)),
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or
((V(0,5)) ) = (5, )y ) = (T (Ls))y) (96)
where
~ (on,m) (§n,m(s))1,2
(SN = (97)
(Sn,m(s))z,l (On,m)
= scattering supermatrix
u=1,2
v=1,2

n=m=1,2,...,N

(gn,m(s))l,z and (§n’m(s))2,1 are the reflection coefficient matrices at z = 0

and z = L, respectively, and are given by Equations 23 through 26.

From Equation 43, we can write the relation between the 1 wave at
z =1 in terms of the 1 wave at z = 0 as

(Vo(Lss)); = exp (5, (L) - (7 (0,5)

I'I, 1

+ fLexp (7. (SNIL - 2'] - (8" (2,9)) ,dz
Jo Cn m n 1
’ (98)
Note that
S z for u=1
z =
u l L-z foru=2

Similarly, the 2 wave at z

L can be expressed in terms of the 2 wave at

2=0

‘.l .l_..- " l_.‘l . K
RIRTR-- ST SN

5 %
S ¢
A0
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L !
; (5 ()2 - (188 (2v,s)) dz" (99)
jo exp ch’m S))Z n S 2 4

where 2" = L - z'. Combining Equations 98 and 99 gives

(pbos)) )\ few G (DU (0, ) (7(0,5)),

(SN0 (7,(0,5)),

(vn(l—as))z (On’m) exp {-(?

fL exp (7. ()L - 2’ » (W8 (2,8)) dz’
0 Cn s n 1

L '
e G (02 - (T (2 e
0

nsm " (100)
Then Equation 100 can be written in supermatrix notation as
(T (L,$))) = (B () ) 2 (((0,9))) + (T () (101) 3
where &
- (Fn,m(s))l,l (On,m)
(T sy ) = (102)
(On’m) (fn,m(s))Z,Z

(I~"m,m(s))1’1 = (rn,m(S))z,z = (fn’m(s)) =exp {-(Y, (s))L} (103)

40
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[“ew G (NI - 2 - (1) (250 a2
0 n,m
(@l)s)) ) = L (104)
e -G 02y - (@) (20
0 n,m

Substituting Equations 11 and 12 into Equation 104, one gets the source
supervector for the two waves in terms of the voltage and current source

vectors as

USUCIN

: - 7(s)" 5 +(s)"
[Cew -G, Iz 1 @ v, () (1) e 1e
0 n,m n,m

L ' ~ ~ J
e e 02T - (7 () (1) (20,5)) Jez
o n,m n,m (105)

where (fﬁs)'(z',s)) is now taken positive in Nl (or +z) direction.
1. NORM OF THE SCATTERING SUPERMATRIX

The scattering supermatrix for a uniform section of a multiconductor
transmission line is given by Equation 97, and has its diagonal block matrices
as null matrices and off-diagonal block matrices as the reflection coefficient

matrices at z = 0 and z = L. From Equation 97, one can write

M AN S v e At iy
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o (G (), 2T (s, )

n,m u,v' * n,m U,V
= G (N - (5 (s) (0 )

: n,m 2,1 n,m 2,1 n,m

] (0, ) (5 (sNT, (5 (s))

n,m n,m 1,2 n,m 1,2

2 S (CR O N R DA [ ER O PR G I

L - n,m 2,1 n,m 2,1 n,m 1,2 n,m 1,2

- ) (106)

_,\ The supermatrix in Equation 106 is block diagonal and, therefore, its eigen-

I...‘

R values are the eigenvalues of its block matrices. Equations 106 and A73 give

Y« - + - 1/2

_ (Sn,m(s))z,1 = Sy m(s))y 4
(Sn,m(s))l,Z ' (Sn,m(s))l,Z

¢ - max G () ] (107)

u=l,y=2 M TTu,vi2

S u=2,v=1

Thus the 2 norm of the scattering supermatrix of a uniform section of a multi-

- conductor 1ine is the larger of the 2 norms of the scattering matrices at the

o terminations.

N

. For passive terminations, an upper bound can be established on the 2 norm

L;; of the scattering supermatrix. For passive terminations, the 2 norms of the

:Z‘j: scattering matrices (reflection coefficient matrices) (§n m(s))y , and

. (Sn,m(S))Z,l satisfy the inequality

< 5 .

< ”(Sn,m(s))HZ <1 for s = jw (108)

-::-

; The proof of Equation 108 is illustrated in Appendix B.
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Similarly, one can establish a lower bound on the norm of the inverse of :
the scattering supermatrix for passive terminations. !
From Equation 97, onecan write the inverse of the scattering supermatrix
as "
(o ) 3 (sN7 )
. -1 n,m n,m 1,2 i
(G msNy )= | . (109) :
(sn,m(s))Z,l (on,m) -
Since (Sn,m(s))l,z and (Sn,m(S))Z,l are square matrices for a uniform section ;
of a line. Then from Equation 109 =
:
: S TS -1 '
(S 3Dy )™ 2 (5 )y )
p -1t by -1
(Sn’m(s))z’l ¢ (sn,m(s))z’l (on,m)
I (8 (N7 - Gy (N1
- g -1t -1 -1t -1
= [(Sn m(s))z 1 (Sn m(s))Z 1]®[<Sn,m(s))l,2 (Sn,m(s))l,z]
(110)
From Equations 110 and A73, one has
1/2
-1+ 3 -1
_ 1 Sn,mls)z,1 « g n(81)72
”((Sn,m(s))u,v) ||2 = | *max . 1+ . -1 .
(Sn,m(s))l,z ’ (sn,m(s)) 1,2 B
~ -1 '
= max (S, _(s)) (111
u=1,v=2 : n.m U’VHZ ) !}
u=2,v=1 ;;
-
x X
. The 2 norm of the inverse of the scattering supermatrix is greater than or 1
%_‘ equal to one for s = jw (see Appendix B). »
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2. NORM OF THE PROPAGATION SUPERMATRIX

The propagation supermatrix for a uniform section of a multiconductor
transmission line in Equation 102 1is block diagonal, with block matrices
equal to the propagation matrix of the line given in Equation 103. From

Equation A73, onecan write the 2 norm of the scattering supermatrix as

1T, () Wy =l pls),

=llexp{-(y.  (s))L}H, (112)
n,m

Thus the 2 norm of the propagation supermatrix is equal to the 2 norm of the
propagation matrix (fn,m(s)) of the line.

The propagation matrix (fn,m(s)) is a complex, nonsymmetric matrix in
general. The calculation of the eigenvalues of the propagation matrix requires
knowledge of the propagation modes, eigenvalues, and eigenvectors of the char-
acteristic propagation matrix (Vcn,m(s)). Since it is difficult to find
eigenvectors of the propagation matrix without the complete knowledge of the
matrix itself, for the purpose of establishing bounds the investigation will
be Timited to a homogeneous medium case. For a multiconductor transmission
line surrounded by a homogeneous medium, the characteristic propagation matrix
is diagonal with equal elements since all the modes propagate with the same

speed. The diagonal elements of the characteristic propagation matrix for a

homogeneous passive case are given by

+ jB(s) for s = jw (113)

where o and B are the attenuation and phase constants.
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From Equation 113, diagonal terms of the matrix (fn m{s)) are given by

T (s)

n.n exp{-[a(s) + jB(s)IL}

exp{-a(s)L} exp{-jB(s)L} for s = jw (114)

From Equation 114, the 2 norm of the matrix (fn m(s)) can be written as

”(fn,m(s))llz = ”(fn,m(s))ll |exp{-a(s)L} exp{-jB(s)L}]

exp{-a{s)L} for s = ju (115)

since the magnitude of the second exponential term is equal to one.

From Equation 115 one can conclude that

Ty (sl <1 for s = ju (116)

and hence

HE, (), Pl <1 fors = ju (117)

3. NORM OF THE SOURCE SUPERVECTOR
The source supervector is given by Equation 105 and, using Equation A62,

its norm can be expressed as

1 sn Il

L ~ ' - -~ '
ujo il (DL -2 - ({5 (2,90 + 7, ) - (i) (2,5)) 102

L ~(e)? . Ry
|- emtetr, (N2 - LA (e - F () - () (e ez
0

n,m n,m

(118)
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Using Equations A91 and A6, the norm of the vectors in Equation 118 can be i

expressed as

L - ' -
||j expl-(7, (sNIL-z'} + [V (2,8) + (2, () - (T (z"0s))]ez’ |
0

n
n,m n,m

In

L - ' - ~
[MNewt-t, (N2 DIIIT @) + (2 (D) - (20 Tl

0 n,m n,m )

A

L ' - -
[“Mewt-v, (02 Bl DI @)l + 12, (N2 ez

0 n,m n,m
L (119) .
|- eteti, (02" - LA @) - (F (61 - (G (@ns) Tae] *

0 n,m n,m

A

L -~ [} -~ -~ '
J lexp{-(3, m(s))z"}llH[(V£S) (2,9)) - (3, () + (£ (2,507 a2

0 n, n,m

In

: ; j(s)" ; nes)”
J lexpt-(¥,  (sMz"[I TNV (2N )1+ Iz, (NI 2%,s))] dz”
m m

0 I’l, n’

(120)
For a homogeneous medium, from Equation 115 the norm of the propagation

matrix is bounded by (for s = jw)

lexp{-(¥, (sNIL - 2']|l <1 (121)
n,m

lexp{-(3, (s))z"]| <1 (122)
n,m

Substituting Equations 119 through 122 into Equation 118 gives

[ 5. PSPPI Y. TN WS RIS - V5 S S W R 7 ¥

L - ' - ~ !
[T s 1E, DIIES @) ) ez
(o] n

i

EOSUB IR :
L) 3 #(s)" . :

[ o s+ 1@, oINS @) ) e ;

0 n,m .

(123) :
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Note that the two integrals are equal so that only one is needed, and the norms

can be expressed in terms of the norm of this one as

sNHI II(T,(‘S)'(Z',S))Hl]dz']

(124a)

L , )
1S s Il < U L) sl + 1,
o]

n,m

SRR I

(s)) H2 "(I (z',s) Hz]dz]

u

~ L ~ ! a~
1S 1, s/’ZUO[H(V,(,S) (2,8)ll, + I1(Z

n,m

-~ L ~ 1 -~ ~ ]
1S s I sjotn(v,‘f’ (2Nl + I1Z, (D, 1A 2080, Taz

n,m ® n
(124¢)

If the per-unit-length voltage and current source vectors along the line can
be expressed using delta functions as

~ ' Omax - - ) Omax -
T 2 = 3 W60 elz-g) (1) s = 3T (A8 sn) o2z

o=1 o=1

where o = 1’2""’Omax’ then Equations i24a through c can be written as

~(s) W (s) 5
D0l <2 30 T gl e 1, (611 ) (sn 1,3

(124d)

g
max . - -
NN, <72 30 THEEY (NGl 12, NI (50,1,

o=1 n,m
(124e)

max

in

SRR CINIY [CARC RSN

o=1 n,m

w(s)
7 s)) ),

(124f)

Equations 124a through 124f express the nomms of the source

supervector in terms of the norms of the per-unit-length voltage and current
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.{I source vectors on the line and the norms of the characteristic-impedance matrix
:_ of the line. The expressions for the norms of the source supervector can be
{q
-ﬁ; simplified for the following three special cases.
»
:ij a. Sources are delta functions; that is, the sources exist only at a

point along the line (localized sources). In this case the 1, 2, and « norms

of the source supervector in Equation 124 reduce to
- #8) (s ) 2 (¢S s 2 (3 i(s) (125

IV (NI < 2 1037 (s + 201 (s 1T ()l a)
\ n,m
: S N L, < 2 G s, +v2IE, (D1, TGS (s, (125)
< 2 = n 2 Ch.m 2 n 2
. (@)(s)),) e i(s) (125
S N D1 = 1GE) il + 1@, (L, BGES (Nl 125¢)
_— n,m
3§ b. Sources are uniform along the Tine. In this case the 1, 2, and « 1
-:_ L
i norms of the source supervector in Equation 124 reduce to !
-". 4
N ~(s) ~(s)’ 5 ~(s)'
._-_; s sn I 2 1A (s + a2 AP HE N, (126a) ;
- ’ ]
B ll((vn N, ./2L||(v s))||2 +V/Z L H(zcn rrl(s))Il2 II(I,(f) (s, 3
- (126b) ;
. )
- alS \ o ! 5 > ! 9
Pty o< LGS s+ ond, oo 1als e, e i

n,m

o i
h c. Sources are rather uniform; that is, the variation of per-unit-
' .
@ length sources along the line is small. In this case, it is appropriate to i
i?{ use the maximum so that the 1, 2, and = norms of the source supervector ]
f;;’ can be written as ]
KA 9
{
@
-
1.4:
>,
¥ 48




S N N < 20 A Gl + 1E, 0l 1ES (911

n,m max
(127a)
SN D, <2 LIS @], + 1 AP G (5)11,] ray
’ (127b)
O M < L HES @Il 1 N1, HES (0111
n,m
(127¢)
4. NORM OF THE MATRIX [((1, ), ) = ((F, n(s)), ) (5 (s, 17

From Equations 108 and 117, the 2 norms of the scattering and propaga-

tion matrices are less than or equal to one, and, hence, for s = jw

a2

“((fn,m(s))u,v) : ((Sn,m(s))u,v)llzs'”((fn,m(s))u,v)Ilz”((gn,m(s))u,v)HZ
<1 (128)

Then from Equation A48 one can write

~ . -~ -1
DL, )y = (B 50y 4) & (G (81, 7ML,

u,

< 1 (129)

L= [((F, () lp 10G, a1, Wi

for s = jw
Note that since the product of the norms in the denominator of Equation 129
is less than or equal to one, this upper bound cannot be used for calculating
upper bound for the norm on the left-hand side of Equation 129, for it gives
an infinitely large bound which is not useful. To get a finite bound
in Equation 129, tighter bounds for the scattering and the propagation
matrices are required. For a homogeneous medium, the norm of the propagation

matrix is given by Equation 115 as

TG () M, e o g = g (130)

t
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For a lossless case, Equation 130 reduces to (for s = juw)
T, R(s))y I =1 (131)

Hence, for a lossless case, from Equation 129, onecan write

I, ) ) = (F () ) 2 (5. (). T, < 1
n,mu,v n,m U,V ||2 1 - ”((Sn,m(s))u’v)nz

for s = juw (132)
The norm of the scattering supermatrix for a uniform section of a multiconduc-
tor transmission line can be calculated from the knowledge of the termination
impedances considered next.
5. NORM OF THE SCATTERING MATRICES AT TERMINATIONS

The scattering or reflection coefficient matrices (§n,m(s))1’2 and
(§n,m(s))2,1 at the terminations of a uniform multiconductor Tine are given

by Equations 25 and 26 1in terms of the characteristic-admittance and

termination-admittance matrices as

S

[T, () + (T ©0sNTh- (3, () - (Y (0,5))]
m

(5))
n,m 1,2
n,m n,m n,m (133)

Cn,

(s)) + (Fp  (LsNThe [, () =(Fp (L,s)]

n,m n,m n,m n,m
(134)

where (¥ (0,s)) and (Y (L,s)) are the termination-admittance matrices at
Tn,m Tn,m

z=0and z =L, respectively. These are related to the termination-impedance

matrices by the following relations:

(Fr  (0,5)) = (zTn,m(o’S))-l (135)

Voo (Ls)) = (I, (L) (136

(Fr (L) = (T (L9) )
50




From Equations 133 and 134, using Equation A6, onecan write

< N 5 -1
16, (01l < IO (D) + (- @snT|
SN, ) - (0N (137)
n,m n,m
. g 5 -1
16y aNgqll < NT, ()% (T (N T
S () - G L)l (138)

For a short- or open-circuit termination (all termination impedances are zero
or infinity), the scattering matrices in Equations 133 and 134 are equal to,
resgectively, - or + the identity matrix. And since the eigenvalues of the
jdentity matrix are all equal to one, the norm of the reflection-coefficient
matrices is exactly equal to one for short-circuit or open-circuit termination
and, therefore, these two cases will be excluded and the assumption made that
the termination impedances are finite and nonzero.

An estimation of upper bounds for norms of scattering matrices in Equa-
tions 137 and 138 is quite difficult without a complete knowledge of the

characteristic-admittance and termination-admittance matrices. However, things

can be simplified somewhat ifone assumes that the termination-admittance matrices

are real and diagonal; the real, diagonal matrix implies resistive diagonal
loads, that is, there are no loads between conductors and each conductor is
terminated to ground in a resistive 1oad. This is not a severe assumption
since, inpractice, diagonal. loads are very common for electronic systems con-
nected by multic. Juctor cables. Further,one assumes that the medium is loss-
less, or the losses are small so that the characteristic-admittance matrix is

real.
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- For diagonal resistive loads., one has
H N
- (Y (0,s)) = (6; (0))
- T
& n,m n,m (139)
- (Vr  (L,s)) = (6 (L)
) Tn,m GTn,m
Yo where k
- G (0) =0 :
- n,m ifn#m '
L~ G, (L) =0
e Tn,m
A
® and forn=m
;'f GT (0) = the conductance between nth and ground conductors at z = 0
i n,n
GT (L) = the conductance between nth and ground conductors at z = L
[ n,n
;i For a lossless case, the characteristic-admittance matrix is independent K
;: of frequency and can be written as
( (F. ()= (7, ) (140)
s n,m n,m
’.
:f Substituting Equations 139 and 140 into Equations 137 and 138 gives ]
> . . -1 . X
- H(S, o)q ollo < NOCY. )+ (6 (ONT 7, NICY. ) - (6. (0))]]]
- n,m 1,22 Cn,m Tn,m 2 Cn.m Tn,m 2 :
> 1, 2y fll, < NDT. )+ dep  WHTHL 10T, ) - (6 W) ;
. n,m 291 2 Cn’m Tn’m 2 Cn’m Tn ,m 2
.:: (142)
:f Note that if the line is terminated in its characteristic admittance, the
:= scattering matrix is a null matrix and its norm is zero. Since the termination-
.f admittance matrices are diagonal, their norms are simply equal to the largest
5 element, i.e.,
L 0 0
y (6. (NI, = max () (143)
v (IR L ‘
4 52 "
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Thus the 2 norm of the termination-admittance matrix is equal to the reciproc:’

fg’ of the smallest value of the terminating resistor. The characteristic-admittance

matrix is a diagonally dominant, real symmetric matrix (Ref. 14). The

diagonally dominant property is defined as (Ref. 7)

V. 1z Voo for all n (144)
n,n :;: n,m
n#m
Since (G, )ispositive anddiagonal, thematrix sum [(7. )+ Gy )]s
n,m n,m n,m

also diagonally dominant. Then from Equation A37 we can write

IV O+, (NT < L
cn,m Tn,m L 2 min {I‘? +(G (0)|_ N l'\‘{' +(GT (O)I}
n cn,n Tn,n L %g; cn,m n,m L
m#n (145)
An upper bound for the characteristic-admittance matrix can be obtained

using Equation A38 as

. ll, < TV, |
n,m 2 n Sn,n
< Nomax [V, | (146)
Bl n ’ m n ,m
N
t:t For a homogeneous case, the characteristic-admittance matrix can be
= obtained from the per-unit-length inductance matrix using the relation
. o 1 -1
o (Y y = =(L. ) (147)
_::_ Cn ,m v n,m
f:i where v is the speed of propagation on the transmission line. The self and
.!? mutual terms of the inductance matrix for a multiconductor line can be esti-
:ﬁ: mated approximately, using the following relations (Ref.10).
.
o
.:l;.'
- J'

A O
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0.2 en[4 Hn/dn] uH/m
(148)

—
]

0.2 Rn[Bn /Dn,m] uH/m

,m

The parameters in Equation 148 are defined as

d the diameter of the conductor

H the distance from a conductor to ground plane

D the distance between two conductors (between centers)

B the distance from the conductor to the image of a second
The relations in Equation 148 are valid if the distances between.conductors
are greater than or equal to 5 times the radius of conductors.

Similarly, using the procedure described above, we can calculate an upper
bound for the inverse of the reflection coefficient matrices. From Equations

133 and 134, for diagonal, resistive loads and a lossless case, onecan write

L}
[ e ]
—
—<¢

(3, a(s)7y = ) - (6 (ONTLL(F, )+ (6 ()] (149)
9 9 n

T
n,m n,m »m n,m

-~ _1 -~
y - (G L o [(Y G (L (150)
[( cn,m) ( Tn,m( )] [( Cn,m) + ( Tn,m ))]

« -1
(Sn,m(s))z,l

Using Equation A6 in Equations 149 and 150, one can write

~

ll(gn,m“))ﬁzllzsIIE(?cn ) - (8 NI, -I0F, )+ (5 (N1,

,m ,m n,m n,m
(151)

~ _1 ~ _1 ~
IS, (s M, < NDCY. ) - (G, (L))T I, « HO(Y. )+ (6 (0))]]
n,m 2,112 Cn,m Tn,m 2 Cn,m Tn,m 2
(152)
The norms in Equations 151 and 152 can be evaluated for diagonal loads using
the relations for the norms of the characteristic-admittance matrix, the load

admittance matrix and the matrix [(7c ) - (GT )]'1.
n,m n,m
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Having defined norms of the scattering and propagation supermatrices
and the source supervector, onecan now calculate upper and Tower bounds for
combined voltage waves, voltages, and currents using the relations derived
in Section III.

6. BOUNDS FOR COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Substituting Equation 129 1into 75, one obtains an upper bound for the

combined voltage waves leaving junctions (terminations for a uniform section

of line) as

A, )y M) I

Z = (153)
L= U(Fy (52 DG, ), )i,

1T, (0,81 Ml <
where ((7,(0,5)))s ((085)(s)) ), ((F, (s)), ) and (5, (s)), ) are given
by Equations 91, 104, 102, and 97, respectively. Note that N, is the
dimension of the source supervector and is equal to 2N, where N is the number
of conductors in the transmission line.

The = norm of the source supervector is given by Equation 124, and the 2
norm of the propagation supermatrix is given by Equation 115. The calculation
of the norm of the scattering supermatrix was discussed in Section IV.5. Note
that, fora lossless case, the 2 norm of the propagation supermatrix is exactly
equal to one (for s = jw), and use of the inequality (Equation 108) in Equa-
tion 153 gives an infinitely large bound for the combined voltage waves leav-
ing the termination, which is not useful. Therefore, the knowledge of a
tighter upper bound on the norm of the scattering supermatrix is essential to
obtain a practical bound, and this can be obtained by using relations discussed
in Section IV.5. A lower bound for the combined voltage waves leaving termina-

tions is given by Equation 77 as
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4
.-_ ‘j
" 1V, (0,8)) ) Il ]
]
"J
5(s)) X
IS s L, 1 3
fN‘u[(un W) = (s ) 1 (G )y LIS, )y )7 i, ]
- (154)
is An upper bound for the norm of the inverse of the scattering supermatrix can be
j: obtained from Equations 151 and 152. Note that, in this case, NS is the
xﬁ order of the supermatrices in the denominator and is equal to 2N.
Using Equation A6 in 154, we get
1V (0,80 )l
TCSUCIRIN
>
) e -~ ~ '1
o LR T(GE I I A ({CRIRE D B (P 1 [ R R | :
( (155) a
Substituting Equations 129 and A6 into Equation 79 gives B
‘: upper bound for the combined voltage waves arriving at the junctions as -
* ~(s) k
. /N"II((V (s) )l :
” L s, < (156) !
» - 1U(E, (s llzll((S ms)y W o :
l.. P
¥ where ((Vn(Lu,s))u is given by Equation 92 and N_ = 2N. B
N J
A lower bound for the combined voltage waves arriving at the junctions
. is obtained from Equation 80, using Equation A6 as
¥ ROUIPIN )
o [EAERIN (157) x
- = NI, <s)>u,v>||2uus,,,m<s>>u,v)|:21
Ej Similarly, substitution of Equation 129 into Equations 81 and 83 gives
, an upper bound for voltages and currents at the junctions as 3
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g RGOS, )y M + 10, Dy IS ) )1

25 = (158)
1= JCE, a)y NG, fts), I,

(0
1EQ ) I,

NG Y m‘° Yu S, a1y O+ (e

n, m u,v

IV, ($)) i,

<l
=2
TG )H n(<s ST
(159)
and a lower bound for voltages and currents is obtained from Equations g2

and 84, using Equation A6 as

1 sn N, 2 2 esn i,

AL+ ICE, () MG, (), JIRIIE, o8, )+ (B 1y )T

n,mu,v

(160)
A sn L 2 31 e

Al (GRRETST RTINS TR

U,V

LSy (D)) = (B )y VTN (1) ), ]

9

o (161)
N Since the permutation supermatrix ((P, ) ) is an orthogonal supermatrix, we
oA ity ’

ggj have

-_'.'u;.' - -1 =

o 1Py g I = 10, ), 7= 1 (162)
@

i
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‘0
" where ((P_ ) ) is given by the definition in Equation 61 as
3
.‘,:L: « ) (on,m)l,l (ln,m)1,2
N P = (163)
nLmu,v (1 ) (o )
n,m2,1 n,m'2,2
: Also,
.';_-: rrre -1
o L((Sn’m(s))u,v) + ((Pn,m)u,v)]
=L D )+ e T8 s, T e, ) )7
{ n,mu,v n,m’u,v * \h.m L,y « Vn,m’u,v
and , (164)
% -1, 3 5 -1 g
b ”((Pn,m)u,v) : ((Sn,m(s))u,v)llz Sll((pn,m)u,v) ”2”((Sn,m(s))u,v)”2
< (165)
\ Substituting Equations 162 and 108 into Equation 165 gives
S
_:. -1 . P — s
- ”((Pn,m)u,v) : ((Sn,m(s))u,v)llz <1 for s = jw (166)
- Using Equations A47, 162, 166, and A6 in Equation 164, one obtains
(e -1 1
“[((Sn,m(s))u,v) + ((Pn,m)u,v)] ”2 < T
- 1- ”((Pn,m)u,v) : ((Sn,m(s))u,v)HZ
..': for s = j(ﬂ (167)
Similarly, one can write
. x -1 1
I ”[((S"’m(S))u’v) ) ((pn,m)u,v)] ”2 < 1-|l((p, ) )7L (S (s)). )
" n,mlu,v' 0 Pa,mt ey, v 2
.!‘ for s = Jw (168)
=
«
-
&
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Substituting Equation 162 into Equations 158 and 159, and Equations 167
and 168 into Equations 160 and 161, one obtains upper and lower bounds for

voltages and currents at the terminations, which are given (for s = jw) by

. AL+ (s IR[ICSUDIPIR
MUISIRIIPE SSGRAL FSARIL (169)
1- n<<rn,,,,<s) iy uzu (3, n(s)) U,VHIZ
TGIUBIBIN
I (D), DL+ (S, (s, ICSUCIRI
< 2 2
1= E, o5y IS, o), VI
u v 2 (170)
@O sn I
X S TR I (A I IR (R ] o
z AL TOE, )y MIHE, p(0), V5]
1O sy 1
L NN 1L -Iae, o )1.(<§n,m(s>)u,v)u21
©OUR L+ U, )y DI T By m()y W IRICE (0, VI,

n,m

From Equation All, one can write
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1Py ) 2 (B a0, I,
ol LR ({ CIN D AW L €N B RS { e R S I D B S
= D (G (), )T 2 (G, ls))y T
i [{CRE PRI A (173)
Substituting Equation-173 into Equations 171 and 172 gives
O » ] TS NPT = 13, (), ) ) -

2T+, o)y )l 10, als), )i,

~ ) ~
LGS NI - 10G, a1, VI,

TGIUSINITIES - - -
D E, (D) (S, (D), MK (1),

(175)
The characteristic-impedance supermatrix for the uniform section of a
line in Equation 175 is given by the relation
/5
‘Zc (S))l,l (On,m)l,z

(s)), ) = nam (176)

n,m >
L (ch’m(s))z,z

and the characteristic-admittance supermatrix is given by the relation

(s))y ) )1

n
-
—

N

(s))U,V

(177)

cn,m(S))l’l (O0,m)1,2

(On,m)2,1
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where (ZC (s)) and (?C (s)) are the characteristic-impedance and admittance

n,m n,m -
matrices of the line. )

Thus a lTower and an upper bound for the combined voltage waves leaving
junctions, the combined voltage waves entering junctions, voltages at the q
junctions, and currents at the junctions can be calculated using Equations 153, q

155; 156, 157; 169, 174; and 170, 175, respectively.
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V. BOUNDS FOR A MULTICONDUCTOR TRANSMISSION LINE WITH A BRANCH

Having defined upper and lower bounds for voltages and currents at
terminations of a uniform section of a multiconductor transmission line,
now consider a somewhat more complicated transmission-line net-
work, a multiconductor line with a branch (T-network). A1l the branches of
the T-network are terminated at their respective ends. Two types of excita-
tions will be considered. In the first type of excitation, the network is
excited by an incident external field, and in the second type, the line is
excited by voltage or current sources at the terminations.

Consider a multiconductor line T-network as shown in Figure 4. The
network topology involves three sections of uniform multiconductor transmis-
sion Tines (tubes), and four junctions denoted by 1, 2, 3, and 4. The three
tubes of the network meet at junction 2. The transmission lines are termin-
ated at their respective ends. Let the number of conductors in tubes 1, 2,
and 3 be Nys Moo and N3s respectively, and their lengths be denoted by 21, 22,
and 23, respectively. The medium surrounding the network is assumed to be
homogeneous. It is assumed that the junction 2 is to be of zero length, and
there is no direct coupling between branches. The forward and backward
traveling waves on tube 1, tube 2, and tube 3 are denoted by w1 and wz,
w3 and w4, and Ns and ws, respectively. The combined voltage vectors at
different junctions for various tubes are defined as:

(Vn(O,s))1 wave leaving the junction
Junction 1
(Vn(LZ’S))Z wave arriving at the junction

Tube 1 . (178)
(Vn(O,s))2 wave leaving the junction

Junction 2
(\7n(L1,s))1 wave arriving at the junction
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(Vn(o,s))3 wave leaving the junction
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Figure 4.

Junction 2

(V (Lg»s)),

Tube 2

(¥ (0,5)),
Junction 3

(Vn(L3a5))3

(7,(0,5))
Junction 2

(Vn(LG’S))G

Tube 3

(v, (0,5))g
Junction 4

(V,(Lgs))e
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junction

Teaving the junction

wave leaving the junction

wave arriving at the junction

(179)

the junction

arriving at the junction

(180)

the junction




where L1 = L2 = 21, L3 = L4 = 22, and L5 = L6 =9 Having defined the com-

F

. 3"

Eﬂ bined voltage waves for different tubes, one can now define the propagation
= supermatrix, scattering supermatrix, and the source supermatrix for the network.
’ES 1. PROPAGATION SUPERMATRIX

h‘. For tube 1, the waves leaving and entering junctions are related through

the propagation supermatrix as

(V(Lyss))) (Tpm(sVy 1 (0, ) (V(0,8))

(V,(Lyes)), (0, ) (Tp (), 5 (V,(0,5)),

+ (181)
2 (s)"
- expl-(y.  (s)),z"} « (V3 (2".5)),dz"
fo Cn,m 2 n 2
where
z" = L2 -2z
(Cm(3))q,1 = (T ps))y 5 = exp{-(Y1Cn m(S))zl}
(¥. (s))y=(y. (s)), = (¥ (s))
Ca,m 1 Cn,m 2 lcn,m
s (ch (s)) = characteristic-propagation matrix for tube 1
n,m
;j Similarly, relations between waves leaving and entering junctions for tubes
E{f 2 and 3 can be written as
q
.
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L o
[3emt-tz, (D3l D « (1) (20,9)) 2
0 m

ns (182)
L - '
JH om0y - (G e e
where
(Pn m(S))3 3= (fn m(S))4 4= exP{'(YZC (S))RZ}
> ] 9 b n,m
(?cn’m(S))3 = (?Cn,m(S))4 = (Vch,m(S))
(Y2c (s)) = characteristic-propagation matrix for tube 2
n,m
2" = Ly - z!
and
(V (Lgss))e (T, ()55 (0, 1) (V,(0,5))g
(Vn(LG,S))s (On,m) (fn,m(s))s,e (Vn(O,S))s
Ls ~ : a(s) 'y :
fo exp{-(ch,m(S))s[Ls-z e (v (2',s))gd2
+ . (183)
6 - " s(s)!
- {-( (s)) « (v "s)).dz"
Jo exp ch,m s))g2") ( n (z"s) 642
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Z

where
X
(T m(s))g 5 = (T n(s))g 6 = exp{-h3cn m(S))z3}
% (F. ()e=(F. (s))g= (¥4 (5))
- cn,m 5 Cn,m 6 3cn,m
_;: (73c (s)) = characteristic-propagation matrix for tube 3
N n,m o _. _ o
;?ﬁ z L6 z
,
': Note that (Fn,m(s))l,l’ (Fn,m(s))3,3 and (I‘n’m(s))s,5 are nyxny, Ny xNy s
.3 and nyxn, matrices, respectively, and (chn m(s)), (Y2cn m(s)), and
;:_ (Y3Cn m(s)) are n, xn, , N, xN, and Ny xn; matrices, respectively.
;f The network propagation supermatrix ((fn m(s))u v) and the network source
j; supervector can be obtained by combining the results above in the following
- manner: :
. 1
S ]
% ;
% 1
< )
) ]
~

3
t

o
3
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1 ‘

(3, (Lp.8)),
(T (Lyes)), ,
(7, (L3.8))5 3
(V (Lgss))y §
(7, (Lg.$))s ;
(7 (Lg$))g j

(Fpn(s))1.1 (0 ) (0, o) O A (0, ) .

3 (O ) (Fyom(s)p5 (0 ) (. (0 o (0 )

. N R CI (Fp m(5))3.3 (0 ) CI CI

. (. (0 ) (0, o (Tpm(s))g.q (O o) (0, )

2 (O ) (0, ) (0 ) 0y ) (F, n(s))5 5 (0 o)

2 (0. m) (0 ) (0 ) (0 ) (O ) (Fy n(s))g 6

3

3 (7,00,5)), (W8s)(s)),

§ (7 (0,5)), (W@(5)(s)),

: (7,(0.5)), (¥5)(s)),

(V_(0,s)) ' (W5)(s)) (e)

nt*l’4 n 4

B (7,(0,8)) (W) (s))g

g (7,(0,5)); (V) (s)),

: Equation 184 can be written in supermatrix notation as

: ((TplLyes)) = (F ns), ) 2 (100,90 + (T8 6sn)) (185)

Pré

where

y
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((r, -(s))

~—
|

~ )
@(Fn,m(s))4’4@(r (5))5 5@( ))6 6 (186) h 1

propagation supermatrix

L '
[Teot-tr, (N Itz D - (79 (20,0)) 02

0 n,m

L2 v f H(s)'u n
-[0 el (02 + (1 ("5 02

L ~fe)t
[P et (sn3ltz 1 - (185 (20,9)) e
o

~ n,m
(USUBIPE
La . o(s)"
f e, 0,2 - G @ e o
L5 i ' s(s)', . )
fo exp{-(ch’m(s))S[Ls-z B (VnS (z',5))gdz _ a

L
6 .
-1 7 exp{-(¥
[ * et

source supervector

L, - 2" foru-=2,4,6 (187)

(02" -+ (1) (280 y

n

"

le

2. SCATTERING SUPERMATRIX

For convenience in referencing junctions, they are assigned numbers 1,
2, 3, and 4, as shown in Figure 4. For junction 1 where tube 1 is terminated
in the impedance (2T (s))l, the incoming and outgoing waves are related by

n,m
the following relation:

(V,(0,)) = (8, n($))q 5 + (V,(Lyh8)), (188)
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From Equation 26, the scattering matrix (§n n(s))1 5 s given by

(gn,m(S))l,Z = [(7c (s))y + (VT (s))l]-l . {(VC (), - (?T (s)),]

n,m n,m n,m n,m
(189)

where

: > -1

(Y (s)), = (Z (s))

Tn,m 1 Tn,m 1

and

(?c (s))1 = characteristic-admittance matrix of tube 1

n,m

Similarly, we can write relationships between outgoing and incoming waves at

junction 3 and 4 as

(7,(0,5))4 = Gy nf$))g 3 = (Tp(Lges))y (190)

(V0(0,8))g = (S, n(s))g 5 = (Vp(Lgas))g (191)

~ _ ~ ~ -1 ~ ~
Gonlsg,3 = U0 (0 + (T (D10 Ui (6D = Ty (D))

n,m n,m (192)
~ ~ ~ -1 ~ -~
(S, (s))e e = [(Y  (s)),+ (Yo ()17 « [(Y. (s))y- (Y7 (s)),]
n,m 6,5 cn,m 3 Tn,m 3 Cn,m 3 Tn,m 3
(193)
(Fp (), = (I (s));!
n,m n,m
3 -1
(Y (s)), = (Zy (s))
Tn,m 3 Tn,m 3
(VC (s))2 = characteristic-admittance matrix of tube 2
n,m
(?c (s))3 = characteristic-admittance matrix of tube 3
n,m

The outgoing and incoming waves at junction 2 are related in the following

manner:
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(T(0,5)), (T (Lyas));
(0,00, | = (G, a1y 2t | Gpltgsh)y (194)

(7,(0,5)) (T (Lgrs))g

where ((§n,m(s))u,v)2 is the scattering supermatrix of junction 2.

It is assumed here that junction 2 contains only wires which are inter-
connected; that is, there are no impedances involved at the junction 2. The
procedure for calculating junction scattering supermatrices in general are
discussed in References 11 and 12. Here the procedure is illustrated
for the case shown in Figure 4. Further, the junction is considered lossless,
i.e., all the energy incident at the junction is reflected and/or transmitted.

At a junction where there are several tubes interconnected to one
another, Kirchhoff's current law and Kirchhoff's voltage law have to
be enforced.

Kirchhoff's current Taw states that the sum of the currents flowing into
a node is zero. For the case where nlth wire of tube 1 is connected to the
n2th wire of tube 2, and to the n3th wire of tube 3, and these wires are not

connected to any other wires at this junction, one has

(0) (0) (0) -
(Irll (s))p 1 ¥ (In2 (s)), o+ (In3 (s)). 3=0 (195)

Equation 195 can be put into supermatrix form, i.e.,

(00, g
tube 1 1 tube 2 : tube 3 ! +(0)
(00...1...030...1...0 40 0...1...1}) 2 | (I.5(s))ep ) = ((0.))  (196)
(i{0s)),

where (f$0)(s)%;1’ (f£0)(s))m2‘ and (fﬁo)(s))n3 are current vectors at the

junction associated with tubes 1, 2, and 3, respectively.
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In Equation 196, all elements in the left vector are zero, unless they
correspond to the conductors which are connected at the node. For NC connec-
tions at the junction, there are Nc equations similar to Equation 196 and

we can define the junction connection supermatrix ((CI )a b) so that

n,m
7(0)
(1, (s)y 1 !
. ~(0) =
(e Dap) # | a7 () | = (100)) (197)
’ -(0)
(In (S))Y‘,B
iﬁf where ((C ). .) is anN_x M, supermatrix, and M. is the total number of
o In m a,b c J J
Ej conductors entering the junction. In this case, Mj =y + Ny + N3-
-’ Kirchhoff's voltage Taw requires all voltages associated with each con-
:ﬂ ductor to be the same at the same node. Thus for the above example, we have
w(0) 5(0) -
an (S)r,l - Vn2 (S)r,Z =0
(0) (0) (158)
=(0 w0 _
- Vi (S)r,l -V (S)r,3 =0
-. 1 3
If there are M conductors being connected to the same node, there are M-1
equations in Equation 198. Equation 198 can also be written in supermatrix
form as
' ' ~(0)_
00...1.:.040...21;...000.....0...0 6Dy,
- | I ~(0)
e 00...0...0{0...1..0..100..-1..0..0 ol (V) 5 )= ((0)),)
\:} ............ I R ’
AT 1 ) ~{0
. oo...o...oio1...o...oso 0...-1....0 (vrg )(s)),,,3

(199)
where (Véo)(s))r’l, (Véo)(s))r,z, and (Vﬁo)(s))r,3 are voltage vectors at the

L@

junctions associated with tubes 1, 2, and 3, respectively. Here, each row




Iy

. ." l" .l. .‘. A.. l~

contains one 1and one-1, and all other values are zero. Note that the subscripts

1, 2, and 3 on voltage and current vectors denote tube numbers, not
waves.
For NC connections there are Mj -Nc equations. Let us denote the corres-

ponding supermatrix as ((C, )a,b)

n,m 4
e,
(e, Jap) @0, , )= (e (200)

n,m .
@00, 4

At the junction, the total voltage and current are related to the incident

and reflected voltage waves as

-r_m‘AAAAALm_--_

=(0) - 1w Y

(@00 ) = 3 LT, () ), + (T ()] (201) _
((T(O)(S)) )= (V. (s)) ), o LV (D) ), - ((V (s)).)_] é
n r' 2 Chom ryr'’2 n r'+ n r'- .
? - (202) 4
where (Vn(s))r_,+ and (Vn(s))r,_ are outgoing and incoming waves on the rth -
tube in the form of combined voltage vectors at the junction, and .

((Y (s)) ,), is the characteristic-admittance matrix of the junction and

Cn’m rsr 2

ijs given by Equation 31 as

. 3 .
(Y. (s), o=@ (Y. (s)). .. (203)
Cn.m etz Ch,m r,r;2
where (V (s)). .,.. is the characteristic-admittance matrix of the rth tube,
Coom  Tor'sv

at junction 2.

Using Equations 197 and 202 gives
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() )y & (T () (2042)

Premultiply Equation 204a by a normalizing nonsingular impedance supermatrix

(T )y )

n,m n,m (204b)

and, similarly, from Equations 200 and 201, one gets

(C, )iV (s, =-(c, )2 ((V(s))) (205)

Vn,m n,m r-
Note that ((C Y. ) and ((C

In,rp a,b~ vn,m : .
(MJ. -Nc)xMJ., while (ch,m(s))r,r.)2 is of size MJ.XMJ.. The vectors
((V“(s))r)_+ and ((Vn(s))r)_ are of size Mj'

Combining Equations 204 and 205 gives

)a,b) are supermatrices of size chMJ. and

'((CV )a,b)
oo . DV (D)),
dap) 2 (g () 0,

~

(o)) 2 (167

(206)
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4 n,m DT, (s)),).
((Zy $Dap) 2 (€ Dy ) (g (D), ),

n,m
n,m . n,m (207)

From Equation 207, the scattering supermatrix for junction 2 is

-1
'((CV )a,b) )
(OO NP oM )
((Zy (), ) ((CIn,m)a’b) : ((ch,m(s))"-r')z
(¢, )
: Yn,m 2 (208)
((Zy 5Dy ) ¢ ((CIn,m)a’b) : ((?cm(s)),,,r.)2

Note that the normalizing supermatrix ((Zn m(s))a b) makes the two supermatrices
in Equation 208 unitless and well conditioned. Without the supermatrix
((Zn’m(s))a’b),the elements of matrix ((CIn m)a b) ¢ (Y (s)) r')2 will
be small compared to the elements of ((C Y. o).
Vn m a,b
For the network of Figure 4, the outgoing and incoming combined voltage

waves at junction 2 are given by
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(7,(0,5)),
((Vo(s)) )y = | (V(0,8)), (209)
(V,(0,5))¢

(Tp(Lgh8)),
(Vp(Lgos))y (210)
(7 (Lgs$))g

(T (),

The scattering supermatrix in Equation 208 is of the order ij Mj.
For convenience in properly ordering variables in the scattering super-
matrix for the network, let us write the scattering supermatrix for junction 2

in terms of its block matrices; then using Equations 209 and 210 in Equation

207 gives

(V,(0,5)), S E) ) PYP C I ) ) PRI CI O ) P (V (Ly28))4
W03 )= { GonD31 GomDaa Gon(Vas )i { Toltges))y
(Vn(095))5 (§n,m(s))5’1 (§n"m(s))5’4 (§n,m(s))5,6 (Vn(LG’S))G

(211)
Combining Equations 188, 190, 191, and 211, and rearranging the junction
scattering matrices so that the ordering of the components of the incident
and reflected waves is the same as in the propagation supermatrix equation,

one gets
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o (¥, (0,5)))
7 (¥ (0.5)),
R (V,(0,5)),
3 (¥, (0,5)),
EE? (V,(0,5))¢
2% (7,(0,5))¢
\
?;- (on,m) (§n,m(s))1,2 (on,m) (on,m) (On.m) (on,m)

:: (gn,m(s))z,l (on,m) (on,m) (§n,m(s))2,4 (on,m) (gn,m(s))z,ﬁ
,'? (§n,m(s))3,1 (on,m) (On,m) (gn,m(s))3,4 (on,m) (§n,m(s))3,6
A ) (on,m) (0 ,m) (§n,m(s))4,3 (on,m) (on,m) (On,m)

:i; (gn,m(s))s,l (on,m) (on,m) (gn,m(g))5,4 (On,m) (§n,m(s))5,6
Ezi (on,m)' (on,m) (on,m) (on,m) (gn,m(s))s,s (On,m)
"8
- TACRON
:'\f (vn(LZ'S)Z
) (V,(Lgss)y
(Vn(Ls,s)s
(Vn(LG,s)6

From Equation 212, the scattering supermatrix of the network is
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(
( ( ]
(gn,m(s))s,l (On,m (On,m (gn,m(s))5,4 (on,m) (gn,m(s))5,6 ?
(On,m) (On,m (On,m) (On,m) (sn,m(s))s,s (On,m)
(213)

The size of the matrix in Equation 213 is 2N x2N, where N = Ny +n, 4+ ns.
Note that all the block matrices on the diagonal are null matrices.
3. NORM OF THE PROPAGATION SUPERMATRIX

The propagation supermatrix given by Equation 186 is block-diagonal,

with block matrices equal to the propagation matrices of the various uniform

sections of the line (tubes). From Equations A73 and 186, the 2 norm of the

scattering supermatrix can be written as

WY, TR

1y a5y, Mo = max Iy yfs)), (214)

where r is the tube number (r = 1,2,3).

]

The 2 norm of the propagation matrix of a uniform section of a multi-
conductor line was discussed in Section IV.2. For a homogeneous medium
surrounding the multiconductor cable network, from Equation 115, we have

(for s = juw)

(T,  (s)) = expl-a (s)2 } < 1 (215)

n,m r,r”Z

Substitution of Equation 215 into 214 yields
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JMET a4 A a4

HCT SNy VI, = mix[exp{-ar(s)lr}] <1 (216)

faita AT A AL miam 2

where the subscript r represents the tube number.
4. NORM OF THE SCATTERING SUPERMATRIX
For passive terminations, the 2 norm of the scattering supermatrix )

satisfies the inequality

ISy ms)y W, <1 (for s = ju) (217)

because reflected power from all junctions is always less than or equal to
incident power for physically realizable systems (power conservation). The
following derivation illustrates the proof for Equation 217.

The power-conservation condition can be expressea for Tossless tubes

(see Appendix B) as

((TpLyes))y) £ (L8007 < ((T00,80),) ¢ (T (0,s)),)*  (218)

where ((fn(o,s))u) and ((fn(Lu,s))u) are the combined current supervectors for
waves leaving and entering junctions, respectively.

The combined current vectors are related to the combined voltage vectors

in the following manner:

((V,(0,8))) = ((2cn,m(5))u’v) : ((T,(0.5)),) (219)

((V(Lys)),) = ((2Cn,m(5))u’v) (T, (L,s)),) (220)

((1,(0,8)),) = ((?Cn D)) 1 (T (0,5)),) (221)

((T,(L.s)),) = ((vcn,m(S))u'v) DV (Las))) (222)
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(V. (s)) 71

—~
(7]
~
—~—
p—
n

u,v Cn’m

characteristic-impedance matrix
of the network (223)

The characteristic-impedance matrix for the network is given by

((icn’ (s)y, )

(icn,m(S))l’l (0, (0. m) (U (U (0, m

(0, ) (icw“(s))2 2 (0 o) (0 ) (0, ) (0, o)

(0, m (0, (2°n, (s))3 3 (0, ) (0, m (0, o

(0, ) (0, o (0. (2. (s))y 4 (O ) (0, o

(0,.m) (0, m (0. (On’;) (2cn.m(5))5’5 (0, n)

(0y.m) (0, m) (0 ) ©, o (. (ch'm(s))s
The previous equation can be written as

N 6 .
(@ (0, = @ (F (), (224)

where (2c (s))u " is the characteristic-impedance matrix of the tube asso-
n,m ’
ciated with the uth wave. Substitution of Equations 221 and 222 into 218 yields

((V (L»s))) ((Vcn,m(s’)u,v)+ t (T (L. )

y . (¥ t e (@
< (F0,8) ) ¢ (T (s, )T 2 (0,90
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Equation 225 is similar to Equation B5 and, following the procedure of

Appendix B, one can easily prove that, fordiagonal symmetrical loads,

[[CASO ) WIIPES! (for s = ju) (226)

and

jw) (227) >

v
.:'
'_1
.
p
g
4

BB 50y ) Hip2 1 (for s

e B,

a. Norm of the junction scattering supermatrix--The 2 norm of the

junction scattering supermatrix given in Equation 211 is less than or equal
- to 1. This can easily be proven by following the procedure described above
for the network scattering supermatrix. The 2 norm of the junction scattering
supermatrix of a lossless junction is exactly equal to one. Further, the
junction scattering supermatrix of a lossless junction is unitary (Ref. 13).
N The proof of these properties is illustrated in Appendix C.

;' b. Norm of the scattering supermatrix in terms of its block matrices-~

An upper and lower bound for the 2 norm of the scattering supermatrix can be

- obtained in terms of the 2 norms of its elementary block matrices using the

relation (Eq. A102) in Appendix A. From Equation A102 the 2 norm of the

 «

scattering supermatrix is bounded by the following relation:

R N

~

. ) N _
. __lﬁ- Tac|K(sn,m)u,v)||2'S((Sn,m(s))u,v)ll25'/ﬂz mex /N;"(Sn,m)u,v)HZ
sy =

i

(228)

Note that the block matrices in Equation 213 are of two kinds: (1) the reflec-
tion coefficient matrices at the terminations, (2) partitioned block matrices
of the junction scattering supermatrix. An upper bound for the reflection

coefficient matrices can be obtained from the knowledge of the termination

oo .o .
RS \_ SNSRI . N

.
’
.
L a I!-.: .
A a8 8 ¢
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impedance and the characteristic-impedance matrices of the tubes, using the
relations in Section IV.5. The junction scattering supermatrix is obtained
from the knowledge of interconnections at the junction.

In Equation 228, due to the presence of factors NS and N, the
upper and lTower bounds for the 2 norm of the scattering supermatrix may be
very loose and may not be very practical, since the upper bound for the 2
normm of the scattering supermatrix is one.

5. NORM OF THE SOURCE SUPERVECTOR
The source supervector is given by Equation 187, and using Equation A62

its norm can be expressed as

NUUBINIE

L

It

o]

exp{'(?lc
n

(N2 DL (s

(), ;188 (2,0 202

n,m

(N2 LS (2ns) - (7, (1)) (118" (2%,5)) Jaz"

f

I Pttty
f
f

0 n,m
L3 - (s 5 *(s)’
I “expl-(7,,  (s))Lg-2'TH-L(V5Y" (2',8)+(Z, m(S))Z,Z'(IZn (z',s))1dz'||
0 n,m n,
L4 {-(¥ "y ~(S)' M 2 ( ) " ] “I
- , iy m(s))z LV5," (2*,s)) -_(ch ()2 (I3n7 (2",5))1dz"|

L ' 5
1] Pexpl-(vs,  (NILg2 DL (2 s)w(Z, (515 4 (T58) (2 o502z |
0 n,m n,m

u-JL5exp{-(§3c (N2 LS (02, () 5= (1) (2",9)) Jaz |
o b

n,m n,m

2" =L -2 for u = 2,4,6 (229)

where (V&:).(z',s)) and (T$Z)|(Z',S)) are the per-unit-length voltage and cur-

rent source vectors, respectively, on the rth tube.
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For a homogeneous medium, from Equations 121 and 122, the norms of the
exponential matrices in Equation 229 are less than or equal to one. Follow-
ing the procedure used in the derivation of Equation 123, an upper bound for

the norm of the source supervector is obtained as (for s = jw)

TOSATIM

L ~
(1O @l I, 0y 1A @] e

(¢ n,m

ALY 280 Jaz

2 (S) 2" 3

Vi SIM+ Iz (s))
[0 [ SR AR
L - - 1
[0 i+ 1, (51, 0 1A 2 sn)1l 1az

0 n,m

L ) - Y

Jo“ LTSS (2l + 11 sz, 1AL (2,50) 1] Jaz
n,

JL

S LS (2Nl + 1GE, (51, 4l NS (20 1] oz

0 n,m
L - 1 ~ -~ !

S LIEE s+ 11E, ()5 5l IS (2ol Jazy
0 n,m ’

(230)
If the per-unit-length voltage and current source vectors along the tubes can

be expressed as delta functions as

g

et "max

@)z = 3 (), szt -t )
o-r=1 ! r r
or

=(s)', ., _ BK s(s) '

(Ton (2'4s) = cz=:1 (Irfn(s))oré(z " %)

where
Op = 1,2,...,ormax
r=12,3

then Equation 230 can be written as
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) URECUAIRY ¢ LN IET (5o 1)

max  _ .
: (S (0ol +IE, (0 1 (o0 1
0= n,m

[H(v s))02H+||(Z (s)), Il K ll (S))oz 1]

02- 9

A

(o]

ax - -
S LTS (Dol +INE, (s); ol Iigs) (D)o 113

= n,m
021
3ax

[Il(v(S) (Nagll+KZ, () 3l KT (s))oy 11

n,m

3ma ~
z;" [ (Dogll 2, (1) 3l ITSE) (g 11

(231)

Equation 231 can be simplified for the following three special cases:
a. Sources are delta functions; that is, the sources exist only at a
point along the tubes (localized sources). In thiscase, Equation 231 reduces

to
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. ;
TCAUOIN J
1
S(s) (0 5 #(s) (0 ?
(URNCESIIES [t AR O B TSR |
n,m
1S @sn i+ G, 0y Il 1A @l {
n,m .
I Nl N, ()l IS il | ]
C IS (z",s))||+||<zc (s))y Il NI (250 ,
n,m ? |
1) Gzen I I, (g 1l IR el /
3 NS sl 1E, (), 4l 1A @non i
n,
2 | (232)
\ b. Sources are uniform along the line. In this case, Equation 231
,h._ reduces to
2 1S s 1
S (G SROHEAES AR GRABNS
: (GRNON RS A D IPRT N t u OO E
‘ (s <s>>||sa2+||<zc (5 TORNONES
. < n,
15 0112y + 12, (D) oIl N D)1y
! 1) (Nll2g + (2, ())g 3l S (0l e,
: IG5 (0 lreg + 12, (5D 5l 1S (9011 2,
n,
- (233)
~l
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0

¢. Sources are rather uniform, that is, the variation of per-unit-
length sources along the tubes is small. In this case, Equation 231 reduces

to

TESUBIBI

OHE s ey + 10 (D)) (IS (2a)
n

’

IIZI max

0TS (zsh) 112y + I, <s)>1,1|ln<f1; (22,

DS (2o 12y + 1T, (), LIS (2.1 2,
m 9

max

X

A

USNCEON EA TG O TS CRM A

OIS (2,8)) 11 24 + 1z, (D3 3llIHT5 @s) 23Ty,

[”(9(3:)'(2,5))” Q‘3 + Il(icn,m(s))3,3” Il(f3rs) |(Z,S))” 2’3]max

(234)

Thus, an upper bound for the source supervector can be calculated from Equations
230 through 234 in terms of the norms of per-unit-length voltage, current
source vectors on the various tubes, and the characteristic-impedance matrices
of the various tubes.
6. BOUNDS FOR COMBINED VOLTAGES, VOLTAGES, AND CURRENTS

Sections V.3 and V.4 established that the norms of the scattering and
propagation supermatrices are less than or equal to one. Following the pro-
cedure used in Section IV.6 for the derivation of upper and lower bounds for
combined voltages, voltages, and currents, similar relations for the present

network can be written.
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The upper and lower bounds for the combined voltages, voltages, and
currents for a multiconductor transmission line with a branch (Fig. 4) are

given by the following relations (for s = juw):

a. Combined voltage vector for waves leaving junctions

) AU, o), LIS NI, ]
(v (o,sN ), <— | 4 (235) '
1- lI((I‘ mts) )y II((Sn ms )u,v)ll2 ;
. ROSUSININ ' .
(T (0,501l 2y T '
/_[1 + ll((r u,‘,)IIZH((Sn,,,,(s))u,\,)|I2]|I((S DI I [ P ;
|
(236) ]
]
b. Combined voltage vector for waves entering junctions
4
NV (L ,s) )] /N"||((v (D)l (237) |
»S s
T AT, a5y ) ||2|| (Sp,m()y )
_ IS s 1L
V(L s D2 (238)

AL+ [T, f(s)), )T, H((s (s)), i,

c. Voltage vector at junctions

/N1 § jis)
TCIRRTIPS! | +|1<<,,,m<s>)u,v>n2]~||<<,, (Nl )
1~ By )y LG, Hs), I,
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w(s) 3
. N v SL1 - I3 )
o s, = 4 R0 TN WL - TG (), ) ]
= INGLL + T, sy Mg 1S, als))y ]
= (240)
'F ' d.  Current vector at the junctions

= GO < L M (0, T 1, ps0, TGN I,
k-.:.\ $ - < = L) - —
- noue e L (G )y MG, a1, DI,

(241)

A N DL L - 1B, (1) ]
/N;[1+|K(fn,m(s))u,v)HZH((§n,m(s))u,v)HZJH((iCn ()l

1A ) I, 2 2

(242)
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VI. COMPUTATIONS OF SIGNAL BOUNDS FOR A

UNTFORM MULTICONDUCTOR TRANSMISSION LINE

s This section uses the results of previous sections, along with appendices,
to compute upper and lower bounds for the voltage and the current at termina-

tions of a uniform multiconductor transmission line. The examples in this

RN A RRRPARRR, RN

section will help the reader understand fully the concepts and the procedures

used in previous sections in computations of bounds, and also establish the
tightness of these bounds.

1. PARAMETERS OF THE LINE

First consider a lossless line formed by three conductors pius a refer-
ence conductor (ground) as shown in Figure 5. The multiconductor transmission
Tine consists of three identical conductors of 0.2 c¢cm in diameter and 20 m
in length above a perfectly conducting ground plane as shown in Figure 6.

The per-unit-Tength capacitance matrix of the line calculated from CAP

CODE (Ref. 15) is

30.23 -12.94 -12.98
(C, ) =|-12.94 30.23 -12.98 | pF/m (243)
LY t]
-12.98 -12.98 30.14

The characteristic-impedance matrix of the line is given by

(z, )=t )t (244)

where v is the speed of propagation on the 1ine. From Equations 243 and 244,

the characteristic-impedance matrix of the line is

- Ve s e

T N L e e e e KRS, | SRR A SR Y N
Gl S . . « . W St L
N LY ST TSR PR T T A SRR A SRR LI OO




2=0 Ground Plane ’ =L

Figure 5. A three-conductor line over a ground plane.
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Figure 6. Cross section of a three-conductor line over a
ground plane.
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311.377 234.163 234.941
(2 ) = |234.163 311.377 234.941 | ohm (245)
234.941 234.941 312.953

From Equation 245, the characteristic-admittance matrix of the line is

0.9069 -0.3882 -0.389%4
(¥, ) = -0.3882 0.9069  -0.3894 | x102 mho  (246)
n,m
oo ~-0.3894 -0.3894 0.9042
N 2. BOUNDING RELATIONSHIPS
b The four basic equations which determine the upper and lower bounds for
?'::Z: voltages and currents at both terminations of the multiconductor line, as
I:"
. derived in Section IV (Eqs. 169, 170, 174, 175), are
) /N‘[1+||<<§ Ml ]II( AN
II((V,(,O)(s))u)Hw <5 2 : s (247)
-~ S)
) T (0, Dl T 1, (), DI I,
HE PN, < 3 :
L= J(F, a0, Pl 10, a(s)y VI,
(248)
[1- 106, (), IL,T Hdshesn )i,
O s I > 2 e (249) |

NG [+ I, (D), iy 1S, o), 5]
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el 2 3 /_[1 '“<f§n,m(5>>u,v)|121”<f\75,5)<5>>u>|'w ~ .
VLU (T (D), I 10 (D), 1T 10 (90, 0l

(250)
For a lossless line, from Equation 115, the 2 norm of the propagation supermatrix é
is equal to unity, i.e., g

T, sy I, =1 (251)

Substitution of Equation 251 into Equations 247 through 250 yields

LD+ G, D), DT TSN I,

= (252)
1 - ||((Sn(s))u,v)||2

1 O )i, <

N

AT (), L1 10, (), JLIKES s,

HE s o, < £ 0.0 -
no ¢ 1= G, )y i
(253)
. [1 - 10, (), LT IS )l
s, 2 & nm UV 2T n (254)
/N;[l + “((Sn,m(s))u,v)HZJ
. [1- J0GE () L1 1t e i
TGIRIBIPIES e (255) ¢
/N';[1+ ”((Sn,m(s))u,v)”2] ll((ch m(s))u,v)HZ
i N
.
Note that the expressions for upper and lower bounds in Equations 252 through !

255 contain two factors; the first factor depends only on the characteristic

properties of the multiconductor transmission line and the load impedances, and

v e e, L.
T\ VOO

R AN
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the second factor depends on the distributed sources on the line. For a Toss-

.......

less line with resistive loads the first factor is independent of the frequency.

Later in this section are shown the ways to optimize the first factor in
order to improve upon the tightness of bounds.
3. COMPUTATIONS OF SIGNAL LEVELS AND BOUNDS

The upper and lower bounds for the multiconductor line in Figure 5 can
be calculated for various load and source configurations. Let us consider the
configuration shown in Figure 7 where the line is terminated at both ends in
diagonal, resistive loads and is excited by three lumped series voltage sources
at z = 10 m (midway between termination). We will consider the following load
configurations.

Example 1. .Let all the termination resistors be 50 Q at both ends
the line and all three Tumped voltage sources be equal to constant 1 V
each, so that

50.0 0.0 0.0

(Z (L,s)) = 0.0  50.0 0.0 (256)
n,m Tn m
’ ’ 0.0 0.0 50.0

—
~N
-—-‘
—
o
-
w
~—
~—
n

and

i
(@ sn,) (257)

— e s b e

The voltages and currents at the loads are calculated using QV7TA code (Ref.
5). The voltages and currents at the terminations are shown in Figures 8
through 19 as a function of frequency. From these responses, note that the

maximum voltage and current are
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T i
z=0 m z=lum z=20 m

Figure 7. A three-conductor line with diagonal, resistive loads.

~(0)
| (Vo '(s)), |max 0.5V

(258)

0.01 A

+(0)
KON

Using Equations 252 through 255, compute the upper and lower bounds for voltage
and current, and compare these bounds with the calculated results.
The scattering matrices at the junctions (terminations) can be calcu-

lated from Equations 23 and 24 and are given by

0.435  0.221  0.222
Sy m(s)q 2= (S p(s))y = | 0221 0.435  0.222 (259)
0.222  0.222  0.437

Since the matrix in Equation 259 is real symmetric, its 2 norm is equal to its

maximum eigenvalue, i.e.,

LI S T

15y m(s))q ally = NG (D), 41, = 0.879 (260)
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Figure 8. The voltage waveform on wire 1 at z = 0.
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Figure 9. The current waveform on wire 1 at z = 0.
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10. The voltage waveform on wire 2 at z = 0.
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11. The current waveform on wire 2 at z = 0. .
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Figure 14. The voltage waveform on wire 1 at z = 20 m.
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Figure 15. The current waveform on wire 1 at z = 20 m.
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Figure 16. The voltage waveform on wire 2 at z = 20 m.
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Figure 17. The current waveform on wire 2 at z = 20 m.
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Figure 19. The current waveform on wire 3 at z = 20 m.
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Qf From Equations 107 and 260, one has 1
’ d
n

£ 105, als))y I, = 0.879 (261)

v From Equation A60, the ® norm of the source supervector is given by

: -(s)

-2 IV D P, =1 (262)

The eigenvalues of the characteristic-admittance matrix are 0.01295, 0.01295,

kY

. and 0.00128; and from Equations 177 and A70, the 2 norm of the

7 \ .

- characteristic-admittance supermatrix is obtained as
X Y, (s)), I, = 0.01295 (263)
i n,m

X Similarly, one obtains the 2 norm of the characteristic-impedance supermatrix as
(

‘. -~

- 1z, (D), I, = 781.27 (264)

g n,m

A Substituting Equations 261 through 264 into Equations 252 through 255, one obtains

5 the upper and lower bounds for voltage and current at terminations as

"

: 1) I, < 19.0189 V

% Il((f,(IO)(s))u)llm < 0.2463 A

;:: (265)

y 5(0

q II((V,(, )(s))u)llw 20.01314 V

1EO ) L, 2 0.17 %1074 A
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As noted earlier in Section III, the upper and lower bounds for voltage and
current in Equation 265 are the upper and lower bounds on the magnitude of the
largest voltageand current at the terminations, respectively. The lower bounds
should not be confused with the smallest voltage and current at the terminations.
First consider a few other terminations before studying the
reasons for the bounds in Equation 265 to be loose compared to the calculated
values.
Example 2. Consider that the multiconductor line in Figure 7 is termin-

ated in resistive loads such that

200.0 0.0 0.0
(Z (0,s)) = (Z, (L,s)) = 0.0 200.0 0.0 (266)
Tn m T m
’ n, 0.0 0.0 200.0

the scattering matrices at the terminations for this case are

-0.0986 0.344 0.345
0.345 0.345 -0.0963

(Sp.

From Equations 107 and 267, one has

1S, m(s))y Il = 0.5915 (268)

The maximum voltage and current calculated from QV7TA code occur on
wire 1, and the voltage and current responses on wire 1 are shown in Figures
20 and 21. From symmetry, the responses at z = 0 and z = 20 m are identical.

From Figures 20 and 21, note that
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¢ u(0) i = '."

] (vn (s))u Imax 0.5V :

(269) .

)

| (Iﬁo)(s))u lnay = 2-5 %1073 A ]
Substituting Equations 262, 263, 264, and 268 into Equations 252 through 255, ]
one obtains %

1O s )L, < 4.7715 ¥

1@ () )1, < 0.0618 A

A

(270)

R

0.0524 V

v

TEAACIBIR

1) I, 2 6.7x107° A

s agt e g al-“A'

Example 3. Consider that the multiconductor 1ine in Figure 7 is termin-

ated in resistive loads such that

50.0 0.0 0.0
(Z. (0,s)) = 0.0 50.0 0.0 (271)
Tn m .
’ 0.0 0.0 50.0
200.0 0.0 0.0
(Zy (L,s)) = 0.0  200.0 0.0 (272)
n,m 0.0 0.0  200.0

From Equations 259 and 267 one has

(§n,m(s))1’2 = 0.879 (273)

'
RJ

n
-
o~

(Sn,m(s))Z,l 0.5915 (274)

o

- a
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From Equations 273, 274 and 107 one obtains

(S, mls))y, )11 = 0.879 (275)

u,v

The voltage and current waveforms on wire 1 at z = 0 and z = 20 m are shown in
Figures 22 and 23. and 24 and 25, respectively. Because of symmetry, the responses

on wires 2 and 3 are the same as on wire 1. Figures 20 through 23 show that

| GEO(80)y Iy = 048 ¥
(276)

y Imax = 0-00¢ A

$(0
| (iL%(s))

Substituting Equations 262, 263, 264 and 275 into Equations 252 through 255

gives

1) )l < 19.0189 v

0.2463 A

In

~(0)
I
I () ) o (277)

) I, = 0.01314 v

v

1(EOs) 1T, 2 0.7 %107 A

Note that these bounds are the same as for example 1. The bounds depend mainly
on the scattering matrices at the junctions, and the smaller values of the ter-
minations determine the upper and lower bounds.

Example 4. As the last example, consider that the multiconductor line in

Figure 7 is terminated in its characteristic impedance at both ends, so that
(I, (0,s)) = (2T (L,s)) = (2c (s)) (278)

T
n,m n,m n,m
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The maximum voltage and current occur on wire 1. The voltage and current wave-

forms on wire 1 at z = 0 are shown in Figures 26 and 27. These responses show

that
~(0) -
| (07 (8)) g = 0+5 ¥
(279)
#(0) - -3 '
| (In (s))u |max = 0.6465 x10 ° A :
The scattering matrices at the terminations for this case are null matrices;
‘_?ff- that is,
. (Sn’m(s))l,z = (Sn’m(s))z’l = (On,m) (280)
5o Therefore
15y, m(s))y I, = 0 (281)

Substituting Equations 262,263, 264 and 281 into Equations 252 through 255,

one obtains

s I, < 1.2247 v

1012 (s) )11, < 0.01586 A
(282)
1D () ), 2 0.2081 v

B 10(E0(s)) )], > 0.26 x1073 A
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Figure 27. The current waveform on wire 1 at z = 0.
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4. ANALYSIS OF THE CALCULATED BOUNDS

In Equations 247 through 250, a factor /N; appears because the
2 norms of the scattering, propagation, and characteristic-impedance supermatrices
are used instead of the » norms. In all four examples, note that the
o norms of the scattering matrices are less than one and, for a lossless homo-
geneous case, the = norm of the propagation supermatrix is equal to one.
Therefore, the upper and lower bounds for voltages and currents can be expressed
in terms of the « norms of the other quantities. Following the same procedure

used in the derivation of Equations 252 through 255 yields

[+ (G )y Dl IS N,

i(0) 1
IV sH ) I, <5 = (283)
n e <2 L= G, Ny e
T Ny DL+ 1, (), I TS N )L
IS s L, < 3 — -
1= (G, (), VMl
(284)
g (s)
- [1 - (S, (s)) U T BV (s)) )
1A snl, 2 3 Gy ns1)y ) ] 1,151, (285)
" L+ S, plsNy Dl
[1- 1, o), VLT IS e il
% TRISUIPINES ! "y, ] | b W' (286)
& [+ (G plsN), T 10 (D), )l
-5
E? From Equations 245, 246, and Al0, one obtains
»
E3f':33 (T, (N, VI, = 0.01684 (287)
N n,m ’
?! 1(F (5D, )l = 782,835 (288)
5
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The » norms of the scattering supermatrices for the four examples considered

earlier are:

a. Example 1--50-3 termination

103y (), W, = 0.88 (289)

b. Example 2--200-2 termination

(S, m(s))y I, = 0.7876 (290) .

c. Example 3--50-Q and 200-7 termination

1S, m{s))y Ml = 0.8 (291)
d. Example 4--characteristic~-impedance termination
My m(sDy Wl =0 (292)

Substituting Equations 287 through 292 into Equations 283 through 286 upper
and lower bounds for voltage and current for the four examples are obtained as:

a. Example 1--50-0 termination

1 () )11, < 7.833 v

> 1010 )) )1l < 0.1319 A

- (293)

;. ll((Vf‘O)(s))u)Hm > 0.0319 v

f;; ||((Tf.,o)(s))u)||w >0.41x107 A 5.

|

ﬁ
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o
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LS B R R
o

R
v
j:; b. Example 2--200-Q termination
.::.:
e O sN 1, < 4.208 v
Il((f,(,O)(s))u)Ilm < 0.0709 A
i (294)
. ll((V,(,O)(s))u)Hm > 0.0594 V
: II((fﬁ‘O)(s))u)llm >0.76 x107% A
c. Example 3--50-Q and 200-0 terminations
s PO () I, < 7.833
v 1O )1, < 0.1319 A
o (295)
3 1) )l 2 0.03
IV~ (s)) )M, > 0.0319 v
{ 1RO s)) )1, 2 0.41 %1074 4
d. Example 4--characteristic-impedance termination
1) I, < 0.5V
i 108951y )11, < 0.0084 A
i 0) (296)
. ~ 0
k9 v (s M, 2 0.5V
= 1O () )1, 2 0.638 x107% 4
':é Comparison of Equations 265 and 293 shows that there is an improvement in the
Zﬂ; bounds by a factor of approximately v/6. This is due to the fact that the = and
23 2 norms of the scattering, characteristic-impedance, and admittance supermatrices
N
N
111
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are approximately the same, and when « norms of supermatrices are used in Equa-

tions 283 through 286, the constant multiplier /N; drops out. But in the case

PP

of example 2, this is not the case. A comparison between Equations 270 and 294
shows that there is no significant improvement in bounds when « norms are used

instead of 2 norms. For examples 3 and 4, the bounds are improved by a factor ?
of /6, as is evident from comparisons between Equations 277 and 295, and 282

and 296, respectively.

Note that the upper and lower bounds on voltage for example 4
(characteristic-impedance termination) are exactly equal to the calculated
values. A comparison of bounds with calculated values in examples 1 through 4
indicates that tighter bounds are obtained when the termination impedances are
closer to the characteristic-impedance matrix of the multiconductor line. This
is because a factor [1 + H((§n’m(s))u’v)|l2]/[1 - ”((gn,m(s))u,v)llzj
appears in expressions for upper bounds on voltage and current and a factor
[1 - ”((gn,m(s))u,v)IIZJ/[l + "((gn,m(s))u,v)ll2] appears in expressions for
lower bounds on voltage and current. The higher values of the 2 norm of the
scattering supermatrix result in higher upper bounds and smaller lower bounds.

Another source of error in the calculation of upper and Tower bounds for
voltage and current is the use of inequality in Equation 132 in deriving the

Equations 247 through 250. For the four examples considered in this section,

the left-hand side of Equation 132 will be calculated and compared with the
:I bounds obtained by using the left-hand side of the equation rather than the
gi right-hand side. The modified upper and lower bounds for voltage and current

- can be written as
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REARSINIREINES

NN NN . il

OO0 e BCILE, o)), ) + () )

(), P IHLIES NI
(297)

- I0C(1 ) - (T

n, m u,v

AP N Mg AT, (1), IIITEE, a(s)) ) = (B ), i,

Cn,m

L ) = (G50 1 (G ), TS )1
(298)
O ) P llaz 21 ) )L/
Mg DL, W)y ) = (T pls)y ) 2 (G 1)), V1,
1L, )y )+ (P )y VT (299)
TGSUD RIS SRV,
il [((CT I I G O I RPN (I O DB 8
< -1
SL(CR ORI AP e b [PY [{cAR O I (300)

Q

From Equations 97, 102, and 114, the supermatrix [((1n mu, v) - ((fn’m(s)) )

: ((S n,m(s))u,v ] is given by

(1, w)yo) - (T D)y ) 2 (G5 p(s)), )]

n,m U,V
_-j8s
(ln,m) ¢ (Sn,m(s))l’z
. (301)
-JBL 3
-e (Sn'm(s))z’l (ln’m)
113
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Ei The 2 norm of the above matrix is given by
. . ;
:;:,- A CC T I I (G D I I (I E D B -
= square _.JBL
. root of (ln,m) € (S (S))Z 1
= maximum i
= eigen- JBl ‘
- value of (Sn m(s))l 2 (ln,m)
.82 3
- e dB (g :
) (In.m) e S, )1, :
: !
362 .
(s (1 ) :
- = square root of d
L maximum eigen- q
value of X
. 2 -j8s 3882 '
R (1 ) + (G (s ) R O VPR CRN O I
( N
k' JBl -382 2
G502 G, 1)), 1 (1 1) + (B () )
(302)
: X . (< -1
The 2 norm of the supermatrix [((ln,m)u,v) - ((Fn,m(s))u,v) : ((Sn,m(s))u,v)]
is equal to the inverse of the square root of the minimum eigenvalue of the
supermatrix [((1, ), ) = (B n(s)), ) ¢ (B ((s), VT7 2 00y o), )
:;‘ - ((r (s))u v) : ((Sn’m(s))u,v)]. The supermatrix in Equation 301 and its
-, 2 norm at 14.375 MHz for the first three examples are obtained as
i
N
¢

Ei;: 114
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a. Example 1--50-% termination
-~ ~ ~ +
[((ln,m)u,v) - ((rn,m(s))u’v) . ((Sn,m(s))u,v)]
DLy ) - (F (s ) 2 (B s, )] |
1.2873 0.24155 0.24265 -0.84035 -0.42694 -0.42887
0.24155 1.2873 0.24265 -0.42694 -0.84035 -0.42887
- 0.24265 0.24265 1.2895 -0.42887 -0.42887 -0.84422
-0.84035 -0.42694 -0.42887 1.2873 0.24155 0.24265
-0.42694 -0.84035 -0.42887 0.24155 1.2873 0.24265
-0.42887 -0.42887 -0.84422 0.24265 0.24265 1.2895
(303)
From Equations 303 and All, one obtains
00wy ) = (T )y ) 2 (G5 p(s)) ()1, = 1.8630 (304)
and
5 . ((E -1 -
IO, ) ) = Ty ls))y ) o (S (), JT7HI; = 3.6626  (305)
b. Example 2--200-2 termination
e
3
»';‘-
- !
£ n
o
7]
’- ]
N 115




[ )

n’m u’

o 1.2471
0.05188
0.05144
0.19048

] -0.66656

i -0.66649

)= (Fy (s)

Ly -

e, Wy -

U,

0.05188
1.2471
0.05144
-0.66456
0.19048
-0.66649

0.05144
0.05144
1.2473
-0.66649
-0.66649
0.18604

From Equations 306 and All, one obtains

100, )y ) = (5 D)y ) ¢ (65

((F, p(8))y.y) & (G ()]

0.19048
-0.66456
-0.66649

1.2471

0.05188

0.05144

(), )1 7HI,= 2.2081

c. Example 3--50-0 and 200-Q terminations

-0.5477-30.0318

..................
............
---------

-0.3249+30.1381 -0.5457-§0.0318
-0.5457-30.0318 -0.3249+30.1381 -0.5477-30.0318 0.2416+50.

-0.5477-50.0318 -0.3291+30.1380 0.2426+30.

.....
------

,V

Doy - (Fpals)y )

L1y ) = (T n(s)),
¢ [((ln,m u,v
1.2471450. 0.0512+40.
0.0512+30. 1.2471+30.
0.0514+30. 0.0514+J0.

[

-0.5477-30.0318

0.0514+50.
0.0514+30.
1.2473+30.

116

A N
N LN )
IR VAP DR VOIS,

.3 +
) 1 (3 51y )]
(3, n(s))y. )]
-0.3249-J0.1381 -0.5457+30.0318
-0.5457+30.0318

=0.5477+30.0318
1.2873+30.

R I SN

.

-0.66456
0.19048

-0.66649
0.05188
1.2471
0.05144

(Fy n(s))y,) 2 (G (), I, = 1.5788

- '.-A\'.:‘ .\-- X |
LV T S SV

-0.5477+30.0318
~-0,3249-j0.1381 -0.5477+30.0318
-0.5477430.0318
0.2416+30.
1.2873+30.
0.2426+30.

-0.3291-30.1380
0.2426+§0.
0.2426+30.
1.2895+30.

'-._ ‘.‘. .n:‘ﬁ R
b Y R S, Y

v .._v.)_ A 3..‘_-7‘:}’.‘-“\1?:.-_ ‘!}"ﬂ‘ v’,»r"r'. . _»v',‘-r_"Vf.‘_T_‘J" -

-0.66649
-0.66649
0.18604
0.05144
0.05144
1.2473
(306)

(307)

(308)

(309)
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..........................

‘ From Equations 309 and All, one obtains

L

.- | [1QE WS e B (G P € B B (e S, = 1.7318 (310)
D0y )y ) = (T (s))y ) ((Sn,m(s))u’v)]'llj2 = 2.8479 (311)
The 2 norm of the supermatrices [((S ,m(s))u v) + ((P ,m)u v)] and

:j:. LSy m(s))y ) = (P 1)y ()] for the three cases are obtained as

S Example 1--50-: termination

.

2 IS, sy ) * (P ), M1l = 1.879

® IEOG, (5D ) *+ (P ), VT, = 0.8327

o . (312)
‘ "[((Sn,m(s))u,v) - (P, )y )11, = 0.786

n 1ECGE, (5D ) - (P ), VT, = 8.268

‘ 3 9

:‘;'-‘I b. Example 2--200-2 termination

S IO, mls)) o)+ (P )y VT, = 1.5915

1L, a(s)), ) + (P, ), T, = 1.7940

" ) (313)
o FECCS, sy ) = (P )y Wl = 1.4426

B IECGS (50 yy) = (P )y VT, = 2.4479

C

3

<

e
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c. Example 3--50-2 and 200-2 terminations
N DS, p(s))y ) + (P )y I, = 1.879
N - -1 ) g
ICCCS, 8Dy )+ (P )y I TT0IT, = 1,794 ;

: (314) ?
8 IECS, (D)) = (P )y W1, = 1.4426 5
& z -1 )
= IS )y ) = (P )y T, = 8.2874 3
\

fg Substituting Equations 304, 305, 307, 308, 310, and 311 through 314 into

;ﬁ Equations 297 through 300, the upper and Tower bounds for voltage and

4

{‘ current for the three examples are obtained as:

" a. Example 1--5C-7 termination

'f' ~(0)

2 [ D, < 8.429 ¥
¢ -(0)

o II((In (s))u)H°° < 0.0457 A

2 | (315)
1O () )11, 2 0.133

1O () DIl 2 0.17 x107 A

:EE b. Example 2--200-2 termination

3 ll((V,(IO)(s))u)Hm < 4.303 V

1A (s)) )11, < 0.0505 A

. (316)

5 10 ¢s)) I, 2 0.0721 v

: N () I, 2 0.68 <107 A '
€
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C. Example 3--50-2 and 200-2 terminations

[o+]

1) )l < 6.5538 v

(0)
IO (s)) )], < 0.0651 A

7

(317)
0.0657 V

v

TEAICIMIN

2 0.178 x107% A

5.  SUMMARY OF RESULTS
Since this section presents several examples and various ways of calcu-
lating bounds, they are useful summarized in tabular form, as presented in

Tables 1 and 2.
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VII. CONCLUSIONS

This report has developed a formulation for the computation of upper and
lower bounds on signals at terminations of a multiconductor cable network. The
BLT equation expresses the characteristics of a multiconductor transmission
line network in a single supermatrix notation. The upper and lower bounds on
signals are obtained by using norms of vectors, matrices, supervectors, and
supermatrices. Various norms and their properties for vectors, matrices,
supervectors, and supermatrices are discussed.

Having developed the general formulation for the computation of upper and
lower bounds on signals at terminations of a general multiconductor cable net-
work, two special cases are considered: (1) a uniform section of a multiconduc-
tor transmission line, and(2)a multiconductor transmission line with a branch.
For these two cases, scattering and propagation supermatrices are derived and
their properties are discussed. The norm of the scattering supermatrix can be
estimated for passive terminations. Expressions are derived for upper and
Tower bounds on signals for these two cases.

The upper and lower bounds are computed for a uniform three-conductor
transmission l1ine terminated at both ends in diagonal, resistive loads for
several load configurations. A comparison between the calculated values and
these bounds indicate that load values play an important role in determining
the tightness of these bounds. In some cases, the tightness of the bounds can
be improved by using « norms of matrices. Further studies are required to

improve upon the tightness of these bounds.

122




L.
2.
3.
4.
5.
6.
7.
8.
9.
10.

e 1.

T

b.:'-j.'

re:

re 12.

@

@

r.'_'.

o

o

3

o

REFERENCES

Baum, C. E., "Electromagnetic Topology: A Formal Approach to the Analy-
sis and Design of Complex Electronic Systems," AFWL EMP Interaction Note
400, Air Force Weapons Laboratory, Kirtland AFB, NM, September 1980.

Baum, C. E., T. K. Liu, and F. M. Tesche, "On the Analysis of General
Multiconductor Line Networks," AFWL EMP Interaction Note 350, Air Force
Weapons Laboratory, Kirtland AFB, NM, November 1978.

Baum, C. E., "Norms and Eigenvector Norms," Mathematics Note 63, Air
Force Weapons Laboratory, Kirtland AFB, NM, November 1979.

Davis, W. A., and M. K. Sistanizadeh, "Bounding Signal Levels at Ter-
minations of a Multiconductor Line Behind an Aperture," Air Force
Weapons Laboratory Interaction Note 412, Kirtland AFB, NM, June 1981.

Tesche, F. M., and T. K. Liu, "User Manual and Code Description for
QV7TA: A General Multiconductor Transmission-Line Analysis Code,"
AFWL Interaction Application Memo 26, Air Force Weapons Laboratory,
Kirtland AFB, NM, August 1978.

Ralston, A., and P. Rabinowitz, A First Course in Numerical Analysis,
Second Edition, McGraw Hill, 1978.

Forsythe, G., and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice Hall, 1967.

Ogata, K., State Space Analysis of Control Systems, Prentice-Hall, Inc.,
1967.

Brauer, F., and J. A. Nohel, Qualitative Theory of Ordinary Differential

Equations, W. A. Benjamin, Inc., NY, 1969.

Paul, C. R., "Applications of Multiconductor Transmission Line Theory to
the Prediction of Cable Coupling, Volume I," Final Technical Report,
RADC-TR-76-101, Griffiss AFB, Rome Air Development Center, Rome, NY,
April 1976. Also published as AFWL EMP Interaction Note 370.

Baum, C. E., T. K. Liu, F. M, Tesche, and S. K. Chang, "Numerical
Results for Multiconductor Transmission-Line Networks," AFWL EMP Inter-
action Note 322, Air Force Weapons Laboratory, Kirtland AFB, NM,
September 1977.

Agrawal, A. K., H. M. Fowles, L. D. Scott, and S. H. Gurbaxani, "Time-
Domain Analysis of Multiconductor Transmission Lines with Branches in
Inhomogeneous Media," Air Force Weapons Laboratory Interaction Note 333,
Kirtland AFB, NM, February 1978.

123

|




13. Collin, R. E., Foundations for Microwave Engineering, McGraw Hill, 1966.

{
14. Agrawal, A. K., H. M. Fowles, and L. D. Scott, "Experimental Characteri-

zation of Multiconductor Transmission Lines in Inhomogeneous Media Using

Time-Domain Techniques, Air Force Weapons Laboratory Interaction Note

332, Kirtland AFB, NM, February 1978. i

15. Agrawal, A. K., "CAPCODE User's Manual," AMRC-R-140, Mission Research

Corporation, Albuguerque, NM, May 1978.
{
]
b
i
{
3
:
i
!
!
:
.:
!

L« a4 2 & e AR .5 P .

----------------------------------------------------
................................
..............

------
--------------------
.................................



EMMAMEELY" A
ACARREARY

A

(] _‘l..~.:l _.

SN R S e T T I B =T D PR Sl Sl Tl T Al 2" N D

..............

APPENDIX A
NORMS OF VECTORS AND MATRICES

This appendix reviews norms of vectors, supervectors, matrices, and
supermatrices. Of special interest are the norms of vectors and matrices
needed to establish Tower and upper bounds on the combined voltage waves and
the voltages and currents in the BLT equations, derived in Section II.

A.1  VECTOR NORMS

The norm of a vector (a,) is denoted by I(a )l and it satisfies the

following properties Refs. (3,6 :

I(a)ll 2 0 with [[(a)ll = 0 i (a) = (0)

lata)ll = lal lI(ay)]
Ia) + (b ) < HGa)ll + b, (A1)
)

H(an)ll depends continuously on (an

where

(an),(bn) are N-component complex vectors
o is a complex number
|a| = magnitude of o

A common type of vector norm is referred to as the p norm defined by
z P A2
||(an)||p—{zllan| } for any p > 1 (A2)
n=

This has important special cases
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or, in general

gl

o Norms

Ia )l

A.2  MATRIX NORMS

denoted by ”(An,m)

| (A @11 2 0 with [[(A, )1l = 0 iFF (A
latAy Il = lal (A ]
126
N Y N L T T e A

)l
”(an)llg
Ia )l

._-"_-_‘—_r"'k‘r'r L i L e I"\l"\".r VK"'.'T":T_'_V_-.V v v <

N
z Ianl

n=

N 1/2

- {:E: |an12 = {(a) - (an)*}l/2 = |(a,)]

n=1 (A3)
z |

LR

2l

</N|(a,)

The 2 norm is then the euclidean norm or magnitude.

norm represents the magnitude of the maximum component of the vector.

From Equation A3, one can write

@)1l 201G, 2 ()],

P£q

From Equation A3, one can also write the following relations between,

a1l < N IGa)l

(a)ll 5 < A I1(a )]l

n ||2

Norms can also be defined for matrices.

The « norm or maximum

The

1 norm represents the sum of the magnitudes of the components of the vector.

(A4)

1, 2, and

(AS5)

The norm of a matrix (An m) is

[| and satisfies the following properties:

o = (0 )

-----

.\{\ Y \.vAL ' e
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ST NN

e
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................................

.
o 1Ay ) *+ By Il < (A, I+ 1B, D] 6)
~:\..:_ .
2 1(Ag ) = By 11 < ICA DI 118, D
X
j;i_ For the above relations to be meaningful, we must have matrices of compatible
.'_1 order (Ref. 2).
?;? It follows from Equation A6 that if (A ) is a square matrix, one has
o
= 1Ay ¥ < Ay 1
(A7)
o q = positive integer
':; A common way of constructing matrix norms uses the role of matrices in relating
'ff; vectors via dot multiplication as in
R
o (by) = (Ag ) = (X)
{ (A, @) = NxM complex matrix
.'.'_l'.lj (A8)
ﬁQﬁ (Xn) = M-component complex vector
-7 (bn) = N-component complex vector
’
.. If a matrix nom is defined via
e A, ) = ()]
% 1A I = sup 1 (A9)
(x )20  I(x )l
sup = supremum = least upper bound
.: which makes the matrix norm a least upper bound over all (xn) in Equation A8.
Zi;} The matrix norm in Equation A8 is referred to as an associated matrix norm and
;;i can be thought of as a minimum norm consistent with the chosen vector norm.
.-\'.'
I Only associated norms will be used in the rest of the discussion.
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For 1 and = vector norms, the corresponding associated matrix norms are

given respectively by References 3 and 6.

N

max IAn | = maximum column
l<m<M p= i magnitude sum

NI

(A10)

M
A, I, = max |A, ol = maximum row
’ InsN = ’ magnitude sum

These results apply to general complex N xM matrices.

Corresponding to the vector 2 norm, the associated matrix norm is given by

1Ay w1l 5 = D (A )T+ (A )12 (A11)

where t+ represents conjugate transpose. Note that all the eigenvalues of )

(An m)+ . (An m) are nonnegative since this is a positive semidefinite matrix. 1
1 y

For general complex square (N x N) matrices, a spectral radius can
be defined as )

)

, = spectral radius of (Bn,m

D
—
—
o0
3
3
~—
~
|

(A12)

~—
~—
1]

= A8, )

n,m max

where |A| is defined as an eigenvalue of (Bn m) with maximum magnitude.

max
Having defined matrix norms, we shall now derive relations between differ-

ent matrix norms.

A.3  SPECTRAL RADIUS AND ASSOCIATED MATRIX NORMS

(A, 1 2 oC(A) ) = (MR D)oo (A13)

i
L
\
X
N
N
\
\
d
!
\
L
]
)
]
For general complex square matrices, Reference 6 gives i
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so that the spectral radius is a lower bound for all associated matrix norms
(for square matrices).

Equations Al3 and All give

M o nax < Apaxd Ay ™+ (B 003 172 (A14)

<
max = “‘max n,m
If (An m) is real symmetric, then
p((An,m)) = ”(An,m)llz (A15)

and the eigenvalues of (An m) are all real, since (An m) is real symmetric.
A.4  RELATIONS BETWEEN 1, 2, AND « ASSOCIATED MATRIX NORMS

For an N xM matrix onecan write:

a. 1 and 2 norms--From Equation A9, define the 1 norm of a matrix
* Il € (x )l
A ) « (X
1
(A )y = sup —To n (A16)
n,m' !l 1 (%) x0T

From Equation Al6, one has

(A =) = (X )]
”(An,m)“ 15 n:m(xn)l n 1

Substituting Equation A5 into Equation Al6 gives

A ) - O

L (S
1Ay ), 1O
<M=
<A N8 I (A17)

Similarly, from Equation A9 the 2 norm of a matrix is defined as
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From Equation Al8, one has

HEA ) = (X )]
1Ay )l 5 < "’ﬁ‘(xn)”"z 2 (A19)

Substituting Equation A5 into Equation Al9 yields

1A+ (Ka)IT 4
HAn w2 < =007,

A 11 T
= Tx T

<M (A, o)l (A20)
b. 1 and » norms--From Equation A9, the « norm of a matrix is
defined as
A, 2 -
A = g 2 A21
Il ( n,m)llw (£:3 X, (A21)

From Equation A21, one has

1A * Gl
1A, )l < n,lrln(xn)”: (A22)

Substituting Equation A5 into Equation A22 gives

Il (A ) ) o (X )] 1
I (A )1l < =TT

1 I 10
< T

< M (A23)

.

g |

A

N
%




Similarly, from Equation Al6, one has ]

A ) - 0Ol
“(An,m)llli n,lT(anH;

(A24)

et foc

Substituting Equation A5 into Equation A24 yields

AL ) = X
Ay )11y <M— (X

. P SRy

Ll N0 |
< TS

<Ml (A DI, (A25)

c. 2 and « norms--From Equation Al19, one has

1A, )+ Il

1Ay )l 5 < T, (A26)

Substituting Equation A5 into Equation A26 gives

1A, ) - ()1
”(An,m)Hzi/ﬁ ”(XnﬂIZ

1Ay 1 OO,

</M ”(Xn)Hz

<M, Dl (A27)

Similarly, Equation A22 gives ]

”(A ) - (X )”m 1
O R e (128)

Substituting Equation A5 into Equation A28 yields

SV VN
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A ) - 0,
18y 1l = < =TT

)l 1001
S (I

<MIA, DI, (A29)

The relations between 1, 2, and « matrix norms can now be summarized as:

1
e Ay w1l < AL DIy < /MIHAL DT (A30)

1 L
gl Ay Wl < AL Ty < MITAL DT (A31) 1
/iﬁ HA, I <A DU < MIGAL Ty (A32) #

/lﬁ | Ay Il < 1A, DT, < RICA, I, (A33)
RGP (O PRER TLRI P (A34)
LA, Iy <HAy D < MIEA, (A35)

where M is the number of columns of (An m).
A.5 BOUNDS ON THE NORM OF SQUARE MATRICES

The spectral radius of a square matrix (An m) is bounded by (Ref. 5)

N
o((A, ) =< m'a]x E lAn’ml =1 A, Wl (A36)
m=1
and the spectral radius of (An m)'1 is such that
1 . N
-1 =mn ”An nI - Z lAn ml)
o((A, ) n ’ =

m#n

or

132




0

o((Ay w7t < L (A37)

" min (|A] o] - Zi 1A, o)

SN n m= ’

- m#n

i;i Equation A37 gives a bound for the inverse of a square matrix. The norm

- ) of a square matrix is also bounded by the following inequality (Ref. 7):

i, max (A | <|[(A )ll< Nmax|A | (A38)

NS n,m MM n,m nm o el

A.6  NORM OF DIAGONAL MATRICES

=§; In dealing with electronic systems, one often encounters matrices

fiﬁs which are diagonal. The norms of diagonal matrices are relatively simple to

i

A evaluate. For a diagonal matrix, the associated norm is defined as

:l:;.'

o Gl 1A, )« (X))

= sup ?

o n,m (Xn) ” (xnjﬂi ‘
(_

o (A X )|
- n,n’n

NN = sup 2 (A39)
o '(Xn) IHXn”]

oy

) Equation A39 shows that, for any p norm of the matrix, one has
5 1A x|

N 1A Il p = sUP —oTT—2 (A40)
o~ ’ (X,) n'llp

o From Equation A40, observe that

: (A, Xl

n,n°n""p _

: max : = max|A. | = max A (A41)
L TX T, n ™ oam Pl

@: Hence,

- 1A, Il = max|A | (A42)
2% UFLURL I (U

[
v
i
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Fe
=
A Also from the definitions of 1, 2, and = norms for matrices in Equations Al0
. and All, for diagonal matrices one has
: By 13 = 118 1T = 1CAy 1, = mx [8, (A43) ;
. -1 -1 :?
A.7 NORMS OF [(ln,m) + (An,m)] and [(ln,m) - (An,m)] _
o If [[(A, Il < 1, then one has (Ref. 6) \
’ J,
¢ -1 1
9 100, o)+ Ay DTN < =1 (Ad4) .
- n,m q
i . _ -1 X
10 prove Equation A44, let (Bn,m) = [(ln,m) + (An,m)] . Then, !
; (1 ) = L1, ) + (A, D1 - (B, ) ,
2 or :
(Bn,m) = (ln,m) - (An,m) . (Bn,m) (A45) .;
- Taking norms of both sides and using Equation A6 gives u
.-: :‘
% 1By T2 I+ WAL 1B (A46) 3
Noting that |[(1 _)I| = 1, from Equation A46 one gets >
- ) ]
¥ 18, oIl < T—T0g i# (g Il < 1 -
- n,m .
¥ or i
e -1 1 )
2 N A S N (G (A47) :‘
n,m g
In Equations A47, replacing (An m) by (An m) gives lj
4 1
3 K
-1 1 . 9
X ll[(ln’m) - (An,m)] | < T- A - if ”(An,m)“<1 (A48) ;
. Note that Equation A48 has used [-(A_ ’m)ll = ”(An,m)"' ;‘
i 134 ]
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Corollary 1

Then 10ty ) 2 (6 17 M < T (A49)

Since, from Equation A6,

1e% Ay 1= 1) fea, I
= 1A, i (A50)
Corollary 2
If (An m) is such that (An m)'1 exists and ”(An m)'lll < 1, then
(L, 0) * A 1= (A D70ty v (4, 7 (asD)

Taking norms of both sides and applying Equations A6 and A47, one gets

-1
1Ay 7

3 (A52)
L- (A,

11,0 *+ Ay 171 <

A.8 CONDITION NUMBER OF A MATRIX

The quantity H(An’m)|| H(An’m)°1|| is defined as the condition number of
(An,m) and is denoted as K((An,m)) (Ref. 6). These numbers, defined for vari-
ous matrix norms, give a measure of the condition of (An,m) and are always

greater than or equal to 1. This can be seen from the following:
- -1
K((Ry o)) = 1A, I 1A, 72 (A53)

From the property Equation A6, one has

1By )+ By dll < 1A, DI, ] (As4)




,.,_
e e
. A

Let B )= (A )} (A55)
Then from Equation AS54 one has

1Ay 1 A )7HE 2 1, ]

and since ”(ln,m)l' =1

one has

-1
1Ay Il 1A 72 21 (A56)

n,m

Equation A56 is valid for any associated matrix norm.
A.9 NORMS OF SUPERVECTORS
Section II introduced supervectors or divectors whose components

are vectors and are defined in the form

((a,),) | (A57)
with elementary vectors as

(a,),

n=1,2,....N (A58)

u=1,2,...,N

The elements of supervectors are designated as

L. (A59)

From the definition of vector norms as defined in Equations A2 and A3, the p

norm, 1 norm, 2 norm, and « norm of a supervector can be defined in terms of

their elements as
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............

N Nu )l/P
I, = {Z DL IS
u=l n=
a0l =Y ; 2|
'y 1 UZ; nz-l an,u (A60)
N Nu 2 2
I ), = { 2y, }
u=l n=
1 (Cap) Ml o =]£":‘32Nu lan;ul
1u<N

Note that the norms in Equation A60 satisfy properties of Equation Al.
The p norm of a supervector can be expressed in terms of the norms of its

elementary vectors as

((a),)

= TG

N 1/p
;ll(an)u”p} : (A61)

That is, the p norm of a supervector is equal to the p norm of a vector whose

elements are the norms of the elementary vectors of the supervector.
From Equation A61, the 1, 2, and » norms of a supervector in terms of the

norms of its elementary vectorsare given by

N
CCRRIAED S TCR N
u=1
N 5
() )5 = :E H(an)u||§§ (A62)
u=1
(e Mo = max [(ag), Il

1<ugN

137

.......




From Equation A62 can be written the following property for supervector (same as

Eq. A4 for vectors):

(a1 4 2 1) )15 2 (G ) ), (R63)

or, in general,

(G )y 2 () DT p (A64)

[FN
0

Similar to properties of Equation A5 for vectors, we can write the following

relations for supervectors from Equation A63 as
@) My < N 1) )l
@) )Ml < A () )T, (A65)
@) ) < A NI,

where

N
N = Z N, ' (A66)

A.10 NORMS OF BLOCK-DIAGONAL SUPERMATRICES
Block-diagonal supermatrices were introduced in Section II. A block-

diagonal supermatrix is defined as

3 1. 0 :
- ;
(A ) '-
E; (Al uyu) = nr 2,2. (A67) &
3 ,
EZ () (An,m)N,N é

S - UL PR |
t



‘,w
IR _ U

N where (An m)u y are square matrices of size Nux Nu. The block-diagonal super-

matrix in Equation A67 may be represented in terms of the direct sum @ as

’

((An,m)u,u) = (An,m)l,l GD(An,m)Z,Z ®-- QD(An,m)N,N
N
= in(An,m)u,u (A68)
Since ((An m)u u) is block diagonal, its 1 and » norms are given by
I ((A ), = max (A ) A69
The 2 norm of ((An m)u u) is given by
HCA ) Moo= Do t0a ) e (a1 1T (A70)
n,mu,u’2 max n,mu,u’ ° n,m'u,u
Since
(a ) e ) )=&(A o) (A71)
n,mu,u’ ° n,mu,u u=1  Demusu n,mu,u 3
and eigenvalues of 4
'i'. - 3 + .
((An,m)u’u) . ((An’m)u,u) = eigenvalues of {(An’m)u’u (An’m)u’u} 1
K

l1<uxN (A72)
Then from Equations A70 and A72, the 2 norm of ((An,m)u u) is given by

o _ L 3 "
E? "((An,m)u,u)!lz B "ﬁx[kmax{(An,m)u,u (An,m)u,u}] 3
Ei = max ”(An,m)u,ullz X
E! Y
*;j u=1,2,...,N (A73) 5
EE Thus the 2 norm of a block-diagonal supermatrix is simply the maximum 2 norm of

Ei its block matrices on the diagonal. ;

-
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Ry
S A.11 NORM OF AN EXPONENTIAL FUNCTION OF A SQUARE MATRIX
\‘ If the power series
.
37 = -k
AT f(z) = 3 C,2 (A74)
- k=0
in a complex variable z converges everywhere, then the matrix power series
3 k
2 ClAy (A75)
k=0
> in an N xN matrix (A m) converges absolutely (Ref. 8).
:;:: In the scalar case,e? is defined by
N -
'; ez=1+z+2—1|-22+3—1|-z3+--- = Eszk (A76)
o ! ] =4 k!
IE;Z Since the power series
Z k_l' K (A77)
. k=0
converges everywhere, the matrix power series
s'{ o
.‘~'. 1 k
, ; & (A (A78)
o =0
converges absolutely for any square matrix (An m)' The exponential function
of a matrix can thus be defined for every square matrix (An m) by
o) (A )
.7 n’m L 2 —1_ 3 e
N e - (ln,m) * (An,m) Y7 (An,m) * 3 (An,m) ¥
v 00
e _ 1 k
o N 2 &7 P n) (A79)
e k0
Using Equation A6 in Equation A79 onecan write
' (A m) 2, . 1 3
le ™™ < 1, DI+ A, 1T+ 2 1Ay ¥+ 57 A
@ o
= 1 k
N =Y A, 1 (A80)
- k=0
-
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Substituting Equation A7 into Equation A80 we get

(A )
n,m 1 2
Je M < e, N+ A I+ A P+ R )1
e SN [COT
- 2 e A T = e (A81)
k=0
Therefore, ) I )
A A «
le ™| <e ™T (A82) |
Similarly, for an exponential function of (An n)t we can write i
|
(A )t (A tll
Jle ™™ J) e M7 !
Ay I 1] |
=g M for all finite t (A83)
Note that, in general, ;
\
u
{((A )+B_ )t (A )t (B )t
Pk UL N S REFIFOL FLSIPRS L (A84) !
unless (An,m) and (Bn,m) commute , that is,
(Ag.m) * By = B+ (Ay ) (A85) :

From the above discussion, onecan conclude that if a function of a square matrix

(An m) can be expressed as a convergent infinite series as

~ 1
. L
ke Ry k i
= f((Ay o) g;) ¢ (A ) (A86) |
y ) ’
s then 1
.
1] (A, DI < £CH A D11 (A87) |
S& A.12 NORM OF FUNCTIONS INVOLVING INTEGRALS 5
L \
- Consider a vector expressed as an integral as )
9 : g
2 (s (1)) = [ (8 21 + (by(2") 2 (88) |
. 0 :
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Taking norm of both sides of Equation A88 we get

¥4
I(a (NIl = | fz (A f2')) + (5,(2')) dz'] (A89)

0
The norm of the integral in Equation A89 satisfies the following inequality

(Ref. 9):

Z ¥4
ujz (Ay (') + (by(2')) dz']] .sL 1Ay a2 NI 11z D]

0 0
(A90)
Substituting Equation A90 into Equation A89 gives
z .
I(a, (2))] s[z TR NN CRESNTITS (A91)
o

Equation A91 is an impcrtant relation which is very useful for many physical
probiems which often involve relations of the type in Equation A88.
A.13 NORMS OF SUPERMATRICES

Norms of supermatrices can be expressed in terms of norms of their block
matrices. The 1 and «» norms of a supermatrix can be expressed in terms of 1 and

o norms of their block matrices in the following manner:

max | (A ) <A, ) D] ,< max H(A (A92)
U,V (K n,m u,vlll I n,mu,v |1 1<v<M n, m u, v
A93
max [ [ (VM ] | e Z 1A vl (A93)
where (An,m)u,v is an elementary block matrix (N xN ) of ((An,m)u,v)'
(An,m)u,v in general 1is rectangular.
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v . -
----------------------------------------------------------------

The relations between 1, 2, and » norms of supermatrices, similar to Equa-

tions A30 through A35, can be obtained by following the procedure in Section A.4,

"y
T Al At ad £ A A am w

and the resulting relations are:

misnuAn,,,,n,V)n 2 < (A Wy DIy SRR, )y L, (A9)
u((An wu e = TEAL D <N )y Ml (A9S)
"%s”((A""")“’V)” < A )y I < IR, Dy I, (A98)
——M Anmu v e < HEAL )y DT, < /RGITKGA, ), Dl (A97)
"N

/NLM((A,,,,,,)U,V)H 2 < I Dy M < IR, )y ), (A98)
S

L fi((a

N, TR, Wy W e < N HCAL ), DE (R99)

n,m)u,v)” 15 n,mu,v

where Ns is the number of columms in the supermatrix, which is equal to the
size of the supermatrix for the rectangular case.

From Equations A92 and A9€ one gets

N
—l—max Z II(An m'u, v|| IS (¢ n m)u,v)” 2= < '/N max Z ”(An,m)u,v l 1
M uv it vousl (A100)

Similarly, from Equations A93 and A97 one gets

1
/_N'—- max 2 ”(An,m)U,V“ o = ”((An mu, V)” 2 < /N max Z “(An mu,v ”""
s et Ve (A101)
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Substituting Equation A30 into Equation A100 and Equation A34 into Al01,

respectively, yields

N
1 1
‘/—N—;r:a’c;'ﬂ—:l“n,m)u,v”?s ”((An,m)u,v) ”2i '/N; msx uz-l /N-\;”(An,m)u,VHZ (A102)
L max Lfja ) o< 1A ) Y, < /Ao m 3 V2 o 1 S (A103)
/N;u,VJN; n,mu,vii2a= n,mu,v’ 2=""s 3x v=1 vitTn,miu,v!'2

where N is the number of columns in the u,v block matrix (An m)u v
Equations A102 and A103 give the 2 norm of a supermatrix in terms of the
2 norms of its block matrices, and Equations 92 and 93 give the 1 and « norms

of a supermatrix in terms of 1 and « norms of its block matrices, respectively.
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APPENDIX B

TWO NORM OF THE SCATTERING MATRIX AT A TERMINATION !
OF A UNIFORM MULTICONDUCTOR TRANSMISSION LINE "

From the power conservation, the reflected power from a passive termina- K

-

tion is always less than or equal to the incident power for physically realiz-

able systems. The power-conservation condition can be expressed in terms of

.l
S
N

the combined voltage vectors for waves leaving and entering the termination

(for s = jw) as
ReL(V, (s)), « (T (s))}1 < Re[(V (s))_ - (I (s))]] ‘ (81)

where (Vn(s)) and (Vn(s))_ are combined voltage vectors for waves leaving and

+
entering the termination, respectively, and (fn(s))+ and (fn(s))_ are combined
current vectors for waves leaving and entering the termination (junction). The
* represents a complex conjugate. Currents are positive into the junction.

Equation Bl can be rearranged to give
ReL(T,(s))} + (¥,(s)),0 < Rel(T ()7 « (V(5))_] (82)

The combined voltage and current vectors are related through the characteristic-

admittance matrix of the transmission line as

~

(F. () = (), = (B (s)), « (¥, ()] (83)

%h,m n,m

(1. = 0 (s)) - (V(s))_ = (V(s))_ - (?cn,mts)>T (84)

(I,(s)),

i
_
—<
-
-
ot

If (Vc (s)) is real, that is, the line is lossless, then substitution of
n,m
Equations B3 and B4 into B2 yields

145

.......




%*

(Vo)) + (F, (DT (T ds)); < (F(s)_+(F, ()T (¥ (s))]

c .
n,m n,m (85) .

Since the characteristic-admittance matrix is symmetric, Equation B5 reduces to

(W), = (T, () + (T (s)) < (0 () _ (T, (s)) + (T, (s

Ch,m n - n,m (B6) b

(s)) is a real, symmetric matrix, it can be expressed as

() = (Ay n(s)) + (B n(s)) (87)

in which (ﬂn m(s)) is a real, symmetric matrix, and is defined as

R (B ls)) = (g (5))* (88)

Substitution of Equation B7 into B6 yields

) ’«..< oo

~ = ~ *
(To(s)), + By () = (B n(s)) « (v (s));
-~ -~ -~ *

: < (U ()_ « By () = (B o(s) = (Ty(sD” (89)

Let ;
-~ (B (s)), = (A, p(s)) = (v (s)), (B10)
: (By(s))_ = (A uls)) = (v (s))_ (B11)
Substituting Equations B10 and B1l into B9 yields
; ()" < (8 5 (s
3 (B.(s)), « (B(s0)} < (B (s))_ -~ (B (s)] (812)
i The combined voltage vectors for waves leaving and entering the terminations
if are related through the scattering matrix (§n m(s)) of the termination as ©

(for s = jw): .




AR

Al

-
..

e K0
eatatat et

‘J
~d
-

3

(s)), = (3, ()« (V (s))_= ((s))_+ (5 (sNT (B13)

n,m

Define a new scattering matrix (§6 m(s)) so that

(By()), = (B n(s)) = (B())_ = (B(s))_ + (8} ()] (814)

Substitution of Equation B14 into B12 yields

%*

(B, (s))_ - (8 (s))" + (B (). < (B (s))_ + (B (s)

Sn,m
(B15)

~ ~ -~ *
For any eigenvector (Xn(s)) of matrix (Sﬁ m(s))T « (S! (s)) with eigenvalues

An’ one obtains

*

(%y()) = G n(sNT e (B ()™ = (Rls))™ = X (Rs)) « (Rsn™ (816)

But according to Equation E15

~ ~ T ~ ~ * ~ ~ Y*
(7y()) + G (DT = B )« Gls)™ < (R(s)) = (Fp(sN™  (B17)

[}
n,

Therefore,

A(X ()« (X ()™ < (R () + (X () (818)
or

A, <1 (819)

\"4

. ~ T = * .y
Also, An > 0 since (Sa,m(s)) . (Sn’m(s)) is Hermitian.

Since Equation B18 is true for any eigenvalue, one has

dmax G (ST + G n(sN ™ <1 (820)

Hence

1(Sh mis)Il, <1 (821)
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Substituting Equations B10 and B1l into Equation B13 gives J
i -1, R - (8 . -1 R

_ (Ry (N = (B (), = By () = (B (s)™F - (B ().

or
= A . < ') A -1 . R '

_ (By(s))y = (By () = (B, n(s)) + (B, (s = (B (). (B22)

By comparing Equations B14 and B22, one can write

R

z _ g% s ~ -1

& (B ) = (B () = (8, ()« (g () (B23) i
o - 4
Tj.', Since the matrix (Sr" m(s)) is obtained by performing a similarity transforma- ]
tion on the matrix (Sn’m(s)), the eigenvalues of (Sr'"m(s)) and (Sn,m(s)) are (
. equal. J
:’.5: For diagonal, symmetrical loads the scattering matrix (§n m(s)) (given :
by Eqs. 23 and 24) is symmetric and hence :
P ‘
( . N 1
$ 165, ()1, = Apax Gy () (824) 5
;;' By taking the transpose of Equation B23, one obtains :
P [
" r ) T = X -1 ~ T q
: (3p (DT = By (D7 (5 (DT - (& (5)) (825) -
Since, for diagonal, symmetrical loads, the scattering matrix is symmetric,

.. Equation B25 reduces to

g S (T =R (NS () - (R () (826)

o n,m n,m n,m n,m

',.i For a multiconductor line of symmetrical configuration with diagonal, symmetri-

cal loads, one has

B (F ()« (B () = (5, ()« (¥ (s))

Ch,m n,m n,m n ,m

q
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or
(Bp () = (B 1(s)) « (S, 1(s)) = (S, 1(s)) = (Ay (s)) = (A (s))
(B27)
Equation B27 can be rearranged to give
(A m(s)) = (5, () (An,m(S))-l - (Z\n,m(s))'l ¢ By n(s)) + (R ()
(B28)
By comparing Equations B23, B26, and B28, one obtains
i T_ (&
(Sp,m{s))" = (S p(s)) (B29)
j.e., the matrix (ga’m(s)) is symmetric.
Therefore,
1S mtsDl = 165, (NI, (830)
and hence,
H(gn,m(s))llz <1 (B31)

From Equation A56, the condition number of the scattering matrix is given by

: x -1
1 (DI, o(sD7HI =1

or

165, o(sN7HI, 2 ——2 (B32)
n,m 2 "(Sn,m(S))HZ

From Equations B3l and B32, one has

163, (s 7HI, 21 (833)
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APPENDIX C
TWO NORM OF THE LOSSLESS JUNCTION SCATTERING SUPERMATRIX

From the power conservation condition, the reflected power is equal to
the incident power for a lossless junction (a junction with interconnection
of wires only). This power-conservation condition can be expressed as (for
lossless tubes and s = jw)

(T (L5, ¢ (F m(s))u,v)I * (T (Lys))

)
n, u'v

= ((V,(0,8)) ), + (Y, (s))

T (v *
. T2 (T (L8]

(c1)

u,v

where the subscript v is for the vth junction.

If ((VC (s))u v) is a real, symmetric supermatrix, it can be expressed
m s

n, v
as
((VCn m(s))u,v)v = ((Rn,m(s))u,v)v : ((ﬁn,m(s))u,v)v (c2)
in which ((IT\n m(s))u v) is a real, symmetric matrix, and is defined as
(o 5Dy, )y = (T m(s))u,v)f (c3)

Substitution of Equation C2 into Cl yields

(T80, 2 (R (), )y s (B als)y, )y 8 (L8 );

= ((Tp(0,8))), 2 (AL (D), ), 8 (R )y )y 8 (7008000,

(c4)

150




Let

(By(Los)) )y = (B o))y ), & (T (L8 (cs)

((B,(0,8)) ), (c6)

I
o~
Camn 3
b

=]

-

3
———
[72]
Nt
L
S®
L N ]
———
——
<

3
P
o
-
[%2)
o
g

o
S

<

Substituting Equations C5 and C6 into C4 yie1ds
(B (L»s)) ), ¢ (B (Lns)) ) = (B (0,8)) ), ¢ ((By(0,8))),  (€7)

The combined voltage supervectors for waves leaving and entering the junction

are related through the scattering supermatrix of the jumction as
((V,(0,8)) ), = (S, n(s))y )y 2 ((F(Lyus)) )y (c8)
Define a scattering supermatrix (§A m(s))u v) so that

(B,(0,5)) ), = ((5; (s, ), ¢ ((BL(L,»8))) (c9)

u,viv * \Y

Substitution of Equation C9 into C7 yields

(By(Lys)) )y ¢ ((B(Lyas)),)

= (B(Lyes)) )y 2 (G ns))y )5 ¢ (Bh n(s))y )y T ((B(Lyas))y)y

u,v'v *
(c10)
or

(B(Lyps))y)y 2 L )y )y = (5] (s))

)T
n,mu,v’v

u,v'v : ((gﬁ,m(s))u,v)v]

DB, (Lys)) ), = (o)) (c11)

This equation can hold only if
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1]
r
' |
b_J RPN A UL

2 (G () 0T £ (G a0, )7 = (1 ),

(| or

e 2 o3 -1

- () m(sDy VT = (G (), )5 (c12)
o since ((§n(Lu,s))u)v is not zero.

The result in Equation C4 is the definition of a unitary matrix. From

the definition of the 2 norm of a matrix (Eq. All), one obtains

1G5 o(s)) (c13)

u,v vll2 =

For lossless tubes and lossless junctions, the scattering supermatrix
<, .
((Sn,m(s))u,v) is real.
If al1 the multiconductor lines (tubes) connected to the junction v are

identical, thescattering supermatrix ((§n m(s))u V) will be symmetrical (Ref. 12).

From Equations C5, C6, C8 and C9, it can be shown that

~| - A [ 3 P [ 1 ‘?

(5) nls)y )y = (RY (s, )y 8 (B (s )y 2 (R (s, )7 ]

(c14) iy

4 . g

Since the matrix ((S& m(s))u v)v is obtained by performing a similarity trans- K

formation on the matrix ((§n m(s))u v)v’ the eigenvalues of these two matrices N

are equal. z

Further, following the procedure in Appendix B, it can be shown that, for i

symmetrical configurations of multiconductor lines at the junction, the junc- f
tion scattering supermatrix is symmetrical; therefore,

1S, als), M, = 1 (1), Il = (c15) .

n,m u,v/ivli2 n,m u vivlii2 ;

®
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